The influence of intracoronal sealing biomaterials on the newly formed regenerative tissue after endodontic revitalisation therapy remains unexplored. The objective of this study was to compare the gene expression profiles of two different tricalcium silicate-based biomaterials alongside the histological outcomes of endodontic revitalisation therapy in immature sheep teeth. The messenger RNA expression of TGF-β, BMP2, BGLAP, VEGFA, WNT5A, MMP1, TNF-α and SMAD6 was evaluated after 1 day with qRT-PCR.
View Article and Find Full Text PDFCalcium (Ca) signalling plays an indispensable role in dental pulp and dentin regeneration, but the Ca responses of human dental pulp stem cells (hDPSCs) stimulated with tricalcium silicate-based (TCS-based) dental biomaterials remains largely unexplored. The objective of the present study was to identify and correlate extracellular Ca concentration, intracellular Ca dynamics, pH, cytotoxicity, gene expression and mineralization ability of human dental pulp stem cells (hDPSCs) stimulated with two different TCS-based biomaterials: Biodentine and ProRoot white MTA. The hDPSCs were exposed to the biomaterials, brought in contact with the overlaying medium, with subsequent measurements of extracellular Ca and pH, and intracellular Ca changes.
View Article and Find Full Text PDFObjectives: Tricalcium silicate (TCS)-based biomaterials induce differentiation of human dental pulp cells (hDPCs) into odontoblasts/osteoblasts, which is regulated by the interplay between various intracellular pathways and their resultant secretome. The aim of this study was to compare the transcriptome-wide effects by next-generation RNA sequencing of custom-prepared hDPCs stimulated with TCS-based biomaterials: ProRoot white MTA (WMTA) (Dentsply, Tulsa; Tulsa, OK) and Biodentine (Septodont, Saint Maur des Fosses, France).
Methods: Self-isolated hDPCs were seeded in a 6-well plate at a density of 5 × 10 cells per well.
Introduction: The aim of this study was to present a systematic review investigating the gene expression of various cells (other than dental pulp cells) in response to different variants of tricalcium silicate cements (TSCs).
Methods: A systematic search of the literature was performed by 2 independent reviewers followed by article selection and data extraction. Studies analyzing any cell type except dental pulp stem cells and any variant of tricalcium silicate cement either as the experimental or as the control group were included.
Introduction: Signaling molecules and responding dental pulp stem cells are the 2 main control keys of dentin regeneration/dentinogenesis. The aim of this study was to present a systematic review investigating the gene expression of various dental pulp cells in response to different variants of tricalcium silicate cements.
Methods: A systematic search of the literature was performed by 2 independent reviewers followed by article selection and data extraction.
Reactive proliferations of the gingiva comprise lesions such as pyogenic granuloma (PG), inflammatory fibroepithelial hyperplasia (IFH), peripheral ossifying fibroma (POF), and peripheral giant cell lesion. Osteopontin (OPN) has a dual role, it promotes mineralization when it is bound to solid substrate, and on the other hand, it inhibits mineralization when it is seen in association with solution. Objectives The study aimed to evaluate the expression of osteopontin in normal gingival tissue and different types of focal reactive proliferations of gingival tissue, and its role in the development of calcification within it.
View Article and Find Full Text PDF