Objective: Upper limb movement difficulties in children with acquired brain injury (ABI) result in longer recovery times compared with lower limb. Intensive neurorehabilitation promotes a good long-term functional outcome. Virtual reality (VR) and video game technologies are invaluable adjuncts to traditional neurological rehabilitation as they help to motivate, engage and gain children's compliance in goal-directed therapy.
View Article and Find Full Text PDFBackground: Children and young people (CYP) with acquired brain injury (ABI) require early and effective neurorehabilitation to improve long-term functional outcomes. Non-invasive brain stimulation (NIBS), including transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), have been used to improve motor and sensory skills for children with cerebral palsy. However, there is limited evidence supporting its use in CYP with ABI.
View Article and Find Full Text PDFObjective: This study aimed to systematically review the psychometric properties of outcome measures that assess dysfunctional breathing (DB) in adults.
Methods: Studies on developing and evaluating measurement properties to assess DB were included. The study investigated the empirical research published between 1990 and February 2022, with an updated search in May 2023 in the Cochrane Library database of systematic reviews and the Cochrane Central Register of Controlled Trials, the Ovid Medline (full), the Ovid Excerta Medica Database, the Ovid allied and complementary medicines database, the Ebscohost Cumulative Index to Nursing and Allied Health Literature and the Physiotherapy Evidence Database.
Background: This systematic review aims to synthesise the qualitative evidence exploring parents' experiences of children with acquired brain injury (ABI) undergoing neurorehabilitation during the first year post-injury.
Methods: A systematic review of qualitative research was conducted using thematic synthesis with Thomas and Harden's approach. The population, exposure and outcome model was used for the search strategy.
Background: Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic responses.
Methods: To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M.
Well-controlled repair mechanisms are involved in the maintenance of genomic stability, and their failure can precipitate DNA abnormalities and elevate tumor risk. In addition, the tumor microenvironment, enriched with factors inducing oxidative stress and affecting cell cycle checkpoints, intensifies DNA damage when repair pathways falter. Recent research has unveiled associations between certain bacteria, including , and various cancers, and the causative mechanism(s) are under active investigation.
View Article and Find Full Text PDFThe human microbiota affects critical cellular functions, although the responsible mechanism(s) is still poorly understood. In this regard, we previously showed that DnaK, an HSP70 chaperone protein, hampers the activity of important cellular proteins responsible for DNA integrity. Here, we describe a novel DnaK knock-in mouse model generated in our laboratory to study the effect of DnaK expression in vivo.
View Article and Find Full Text PDFBackground: Children with severe acquired brain injury (ABI) require early and effective neurorehabilitation provision to promote a good long-term functional outcome. Transcranial magnetic stimulation (TMS) has been used to improve motor skills for children with cerebral palsy but there is limited material supporting its use in children with ABI who have a motor disorder.
Objective: To systematically answer what the TMS intervention effects are on motor function in children with ABI as reported in the literature.
Background: Pathophysiological consequences of traumatic brain injury (TBI) mediated secondary injury remain incompletely understood. In particular, the impact of TBI on the differentiation and maintenance of dendritic cells (DCs), which are regarded as the most professional antigen presenting cells of the immune system, remains completely unknown. Here, we report that DC-differentiation, maintenance and functions are altered on day 3 and day 7 after TBI.
View Article and Find Full Text PDFDendritic cells (DCs) play pivotal roles in initiating and shaping both innate and adaptive immune responses. The spatiotemporal expression of transcription factor networks and activation of specific signal transduction pathways determine the specification, distribution and differentiation of DC subsets. Even though pioneering studies have established indispensable roles for specific catalytic subunits (p110δ and p110γ) in immune cells, functions of the regulatory subunits, particularly of Class I PI3K, within the hematopoietic system remain incompletely understood.
View Article and Find Full Text PDFFibroadipogenic progenitor (FAP) cells are implicated as a major source of fatty infiltration (FI) in murine rotator cuff (RC) injury, but FAP cell response after RC tear in a rabbit model is unknown. This study determined whether changes in FAP cell count after an RC tear predate muscle degeneration in a clinically relevant rabbit model. We hypothesized increases in FAP cell count correlate temporally with RC degeneration.
View Article and Find Full Text PDFDeregulated notch signaling has been associated with human pathobiology. However, functions of notch pathways in hematopoiesis remain incompletely understood. Here, we ablated canonical notch pathways, through genetic deletion of Rbpj, in hematopoietic stem cells (HSCs).
View Article and Find Full Text PDFInflammation and inflammatory cytokines have been shown to exert both positive and negative effects on hematopoietic stem cells (HSCs) and hematopoiesis. While the significance of inflammation driven hematopoiesis has begun to unfold, molecular players that regulate this phenomenon remain largely unknown. In the present study, we identified A20 as a critical regulator of inflammation controlled hematopoietic cell fate decisions of HSCs.
View Article and Find Full Text PDFConstitutive activation of the canonical NF-κB pathway has been associated with a variety of human pathologies. However, molecular mechanisms through which canonical NF-κB affects hematopoiesis remain elusive. Here, we demonstrate that deregulated canonical NF-κB signals in hematopoietic stem cells (HSCs) cause a complete depletion of HSC pool, pancytopenia, bone marrow failure, and premature death.
View Article and Find Full Text PDFInflammatory signals have been shown to play a critical role in controlling the maintenance and functions of hematopoietic stem cells (HSCs). While the significance of inflammation in hematopoiesis has begun to unfold, molecular mechanisms and players that govern this mode of HSC regulation remain largely unknown. The E3 ubiquitin ligase A20 has been considered as a central gatekeeper of inflammation.
View Article and Find Full Text PDFIdentifying physiological roles of specific signaling pathways that regulate hematopoietic stem cell (HSC) functions may lead to new treatment strategies and therapeutic interventions for hematologic disorders. Here, we provide genetic evidence that constitutive activation of NF-κB in HSCs results in reduced pool size, repopulation capacities, and quiescence of HSCs. Global transcriptional profiling and bioinformatics studies identified loss of 'stemness' and 'quiescence' signatures in HSCs with deregulated NF-κB activation.
View Article and Find Full Text PDFStudy Design: Systematic review.
Introduction: Children with cerebral palsy (CP) may have limited use of their hands for functional activities and for fine motor skills. Virtual reality (VR) is a relatively new and innovative approach to facilitate hand function in children with CP.
Hematopoietic stem cells (HSCs) are capable of both self-renewing throughout the lifetime of an organism and differentiating into all lineages of the blood system. A proper balance between quiescence and proliferation is critical for the self-renewal and functions of HSCs. The choice of HSCs to remain quiescent or to enter proliferation has been tightly regulated by a variety of cell intrinsic and extrinsic pathways.
View Article and Find Full Text PDFOsteoblasts, the bone forming cells, affect self-renewal and expansion of hematopoietic stem cells (HSCs), as well as homing of healthy hematopoietic cells and tumor cells into the bone marrow. Constitutive activation of β-catenin in osteoblasts is sufficient to alter the differentiation potential of myeloid and lymphoid progenitors and to initiate the development of acute myeloid leukemia (AML) in mice. We show here that Notch1 is the receptor mediating the leukemogenic properties of osteoblast-activated β-catenin in HSCs.
View Article and Find Full Text PDFA balance between quiescence and proliferation is critical for proper maintenance of the hematopoietic stem cell (HSC) pool. Although a lot is known about hematopoiesis, molecular mechanisms that control HSC quiescence remain largely unknown. The ubiquitin-editing enzyme A20 functions as a central regulator of inflammation and adaptive immunity.
View Article and Find Full Text PDF