Kashin-Beck disease (KBD) is a multifactorial endemic disease that only occurs in specific Asian areas. Mycotoxin contamination, especially from the spp., has been considered as one of the environmental risk factors that could provoke chondrocyte and cartilage damage.
View Article and Find Full Text PDFObjectives: Anti-carbamylated protein antibodies (anti-CarPAs) are present in RA sera and have been associated with erosive disease. The exact targets of anti-CarPAs in vivo are currently not well known; we used a proteomic approach on serum and SF of RA patients to assess the human carbamylome and to identify carbamylated autoantigens as potential biomarkers in early RA.
Methods: Mass spectrometry was performed on SF and serum from RA patients.
Introduction: In the management of juvenile idiopathic arthritis (JIA), there is a lack of diagnostic and prognostic biomarkers. This study assesses the use of serum calprotectin (sCal) as a marker to monitor disease activity, and as a classification and prognosis tool of response to treatment or risk of flares in patients with JIA.
Methods: Eighty-one patients with JIA from the CAP48 multicentric cohort were included in this study, as well as 11 non-paediatric healthy controls.
The value of bone marrow aspirate concentrates for treatment of human knee cartilage lesions is unclear. Most of the studies were performed with intra-articular injections. However, subchondral bone plays an important role in the progression of osteoarthritis.
View Article and Find Full Text PDF: Anti-carbamylated protein antibodies (anti-CarP) are reported to be associated with increased disease activity and with more severe joint damage in rheumatoid arthritis (RA) patients. The present study investigated the presence of anti-CarP in various rheumatic diseases, and their specific clinical significance in RA, in Belgian rheumatology patients.: We tested sera from 254 RA patients, 56 healthy controls, and 153 patients with different rheumatic conditions: juvenile idiopathic arthritis (JIA), axial spondyloarthritis, systemic sclerosis, and Sjögren's syndrome (SS).
View Article and Find Full Text PDFIn bone diseases such as osteonecrosis and osteoporosis, a shift toward a preferential differentiation of mesenchymal stromal cells (MSC) into adipocytes at the expense of the osteoblastic lineage is described, leading to excessive accumulation of adipocytes in the bone marrow of the patients. The influence of cytokines and adipokines secreted by adipocytes on skeletal health is already well-documented but the impact of free fatty acids release on bone cell biology and viability is an emerging concept. We have previously demonstrated that the saturated fatty acid (SFA) palmitate (Palm) is cytotoxic for human MSC (hMSC) and osteoblasts whereas oleate (Ole), a monounsaturated fatty acid (MUFA), has no toxic effect.
View Article and Find Full Text PDFIntroduction: Human spontaneous osteonecrosis of the knee (SPONK) is still challenging as the current treatments do not allow the production of hyaline cartilage tissue. The aim of the present study was to explore the therapeutic potential of cartilage regeneration using a new biphasic scaffold (type I collagen/hydroxyapatite) previously loaded or not with concentrated bone marrow cells.
Material And Methods: Female rabbits were operated of one knee to create articular lesions of the trochlea (three holes of 4 × 4mm).
Objective: Osteoporosis (OP) and osteonecrosis of the femoral head (ONFH) share common clinical and pathophysiological features we sought to determine whether ONFH was associated with an increased prevalence of OP and whether the increased prevalence of OP was related to the stage of ONFH at diagnosis.
Methods: We included 243 patients with ONFH and 399 age and sex-matched healthy controls. Data was gathered including demography, risk factors, ARCO staging of ONFH and bone mineral density (BMD).
Osteonecrosis of the femoral head (ON) is a multifactorial bone disease that can evolve to a progressive destruction of the hip joint. Different pathogenic processes have been proposed, among them, an increase of bone marrow (BM) fat resulting from adipocyte accumulation. Marrow adipocytes are active BM residents that influence the microenvironment by releasing cytokines, adipokines, and free fatty acids (FA).
View Article and Find Full Text PDFOsteoporosis is a metabolic bone disease associated with unequilibrated bone remodeling resulting from decreased bone formation and/or increased bone resorption, leading to progressive bone loss. In osteoporotic patients, low bone mass is associated with an increase of bone marrow fat resulting from accumulation of adipocytes within the bone marrow. Marrow adipocytes are active secretory cells, releasing cytokines, adipokines and free fatty acids (FA) that influence the bone marrow microenvironment and alter the biology of neighboring cells.
View Article and Find Full Text PDFHuman bone marrow-derived mesenchymal stem cells (hBMSC) are able to differentiate into cells of connective tissue lineages, including bone and cartilage. They are therefore considered as a promising tool for the treatment of bone degenerative diseases. One of the major issues in regenerative cell therapy is the biosafety of fetal bovine serum used for cell culture.
View Article and Find Full Text PDFHuman mesenchymal stem cells (hMSC) are multipotent cells derived from various sources including adipose and placental tissues as well as bone marrow. Owing to their regenerative and immunomodulatory properties, their use as a potential therapeutic tool is being extensively tested. However, one of the major hurdles in using cell-based therapy is the use of fetal bovine serum that can trigger immune responses, viral and prion diseases.
View Article and Find Full Text PDFObjectives: To investigate the role of the interleukin (IL)-33-ST2 axis in the pathophysiology of primary Sjögren's syndrome (pSS).
Methods: Serum levels of IL-33 and sST2 were determined by ELISA. The expression of IL-33 and ST2 was investigated in salivary glands (SG) by immunohistochemistry.
The biochemical events involved in the upregulation of selected glucose‑responsive genes by 3‑O‑methyl‑D‑glucose (3‑MG) remain to be elucidated. The present study mainly aimed to re‑evaluate the possible role of 3‑MG phosphorylation in the upregulation of the thioredoxin interacting protein (TXNIP) and liver pyruvate kinase (LPK) genes in rat hepatocytes and INS1E cells. TXNIP and LPK transcription was assessed in rat liver and INS1E cells exposed to a rise in D‑glucose concentration, 2‑deoxy‑D‑glucose (2‑DG), 3‑MG and, when required, D‑mannoheptulose.
View Article and Find Full Text PDFNonunion fractures can cause severe dysfunction and are often difficult to treat mainly due to a poor understanding of their physiopathology. Although many aspects of impaired fracture healing have been extensively studied, little is known about the cellular and molecular mechanisms leading to atrophic nonunion. Therefore, the aim of the present study was to assess the pools and biological functions of bone marrow-derived mesenchymal stem cells (hMSCs) and circulating endothelial progenitor cells (EPCs) in atrophic nonunion patients compared to healthy subjects, and the systemic levels of growth factors involved in the recruitment, proliferation and differentiation of these cells.
View Article and Find Full Text PDFWe compared the outcome of different cellular and viral factors on the regulation of the HPV-16 early viral gene expression in trophoblastic and cervical cancer cells. A high variability of the long control (LCR) activity was observed, prompting us to evaluate the role of secreted factors in the control of the early gene expression in trophoblastic cell lines. Endogenous progesterone and exogenous dexamethasone were found to activate LCR driven transcriptional activity.
View Article and Find Full Text PDFEnteroviral infections are associated with type I diabetes. The mechanisms by which viruses or viral products such as double-stranded RNA (dsRNA) affect pancreatic beta cell function and survival remain unclear. We have shown that extracellular dsRNA induces beta cell death via Toll-like receptor-3 (TLR3) signaling whereas cytosolic dsRNA triggers the production of type I interferons and apoptosis via a TLR3-independent process.
View Article and Find Full Text PDFBackground: Gene expression patterns provide a detailed view of cellular functions. Comparison of profiles in disease vs normal conditions provides insights into the processes underlying disease progression. However, availability and integration of public gene expression datasets remains a major challenge.
View Article and Find Full Text PDFAims/hypothesis: The pro-inflammatory cytokines IL-1 and IFNgamma are critical molecules in immune-mediated beta cell destruction leading to type 1 diabetes mellitus. Suppressor of cytokine signalling (SOCS)-3 inhibits the cytokine-mediated destruction of insulinoma-1 cells. Here we investigate the effect of SOCS3 in primary rodent beta cells and diabetic animal models.
View Article and Find Full Text PDFFree fatty acids (FFA) cause apoptosis of pancreatic beta-cells and might contribute to beta-cell loss in type 2 diabetes via the induction of endoplasmic reticulum (ER) stress. We studied here the molecular mechanisms implicated in FFA-induced ER stress initiation and apoptosis in INS-1E cells, FACS-purified primary beta-cells and human islets exposed to oleate and/or palmitate. Treatment with saturated and/or unsaturated FFA led to differential ER stress signaling.
View Article and Find Full Text PDFAims/hypothesis: IL-1beta and TNF-alpha contribute to pancreatic beta cell death in type 1 diabetes. Both cytokines activate the transcription factor nuclear factor-kappaB (NF-kappaB), but recent observations suggest that NF-kappaB blockade prevents IL-1beta + IFN-gamma- but not TNF-alpha + IFN-gamma-induced beta cell apoptosis. The aim of the present study was to compare the effects of IL-1beta and TNF-alpha on cell death and the pattern of NF-kappaB activation and global gene expression in beta cells.
View Article and Find Full Text PDFObjective: Viral infections contribute to the pathogenesis of type 1 diabetes. Viruses, or viral products such as double-stranded RNA (dsRNA), affect pancreatic beta-cell survival and trigger autoimmunity by unknown mechanisms. We presently investigated the mediators and downstream effectors of dsRNA-induced beta-cell death.
View Article and Find Full Text PDFReactive oxygen species (ROS) are known to be involved in redox signalling pathways that may contribute to normal cell function as well as disease progression. The tumour suppressor PTEN and the inositol 5-phosphatase SHIP2 are critical enzymes in the control of PtdIns(3,4,5)P(3) level. It has been reported that oxidants, including those produced in cells such as macrophages, can activate downstream signalling via the inactivation of PTEN.
View Article and Find Full Text PDFbeta-cells under immune attack are destroyed by the aberrant activation of key intracellular signaling cascades. The aim of the present study was to evaluate the contribution of the signal transducer and activator of transcription (STAT)-1 pathway for beta-cell apoptosis by studying the sensitivity of beta-cells from STAT-1 knockout (-/-) mice to immune-mediated cell death in vitro and in vivo. Whole islets from STAT-1-/- mice were completely resistant to interferon (IFN)-gamma (studied in combination with interleukin [IL]-1beta)-mediated cell death (92 +/- 4% viable cells in STAT-1-/- mice vs.
View Article and Find Full Text PDF