Multiple sclerosis (MS) is a chronic neurological condition that leads to significant disability in patients. Accurate prediction of disease progression, specifically the Expanded Disability Status Scale (EDSS), is crucial for personalizing treatment and improving patient outcomes. This study aims to develop a robust deep neural network framework to predict EDSS in MS patients using MRI scans.
View Article and Find Full Text PDFNon-invasive grading of brain tumors provides a valuable understanding of tumor growth that helps choose the proper treatment. In this paper, an online method with an innovative optimization approach as well as a new and fast tumor segmentation method is proposed for the fully automated grading of brain tumors in magnetic resonance (MR) images. First, the tumor is segmented based on two characteristics of the tumor appearance (intensity and edges information).
View Article and Find Full Text PDFIntroduction: In the modern obesogenic environment, heightened reactivity to food-associated cues plays a major role in overconsumption by evoking appetitive responses. Accordingly, functional magnetic resonance imaging (fMRI) studies have implicated regions of the salience and rewards processing in this dysfunctional food cue-reactivity, but the temporal dynamics of brain activation (sensitization or habituation over time) remain poorly understood.
Methods: Forty-nine obese or overweight adults were scanned in a single fMRI session to examine brain activation during the performance of a food cue-reactivity task.
Neural reactivity to food cues may play a central role in overeating and excess weight gain. Functional magnetic resonance imaging (fMRI) studies have implicated regions of the reward network in dysfunctional food cue-reactivity, but neural interactions underlying observed patterns of signal change remain poorly understood. Fifty overweight and obese participants with self-reported cue-induced food craving viewed food and neutral cues during fMRI scanning.
View Article and Find Full Text PDFBackground: With increasing obese populations worldwide, developing interventions to modulate food-related brain processes and functions is particularly important. Evidence suggests that transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) may modulate the reward-control balance towards facilitation of cognitive control and possible suppression of reward-related mechanisms that drive food cue-induced craving. This protocol describes a clinical trial that investigates the neurocognitive mechanisms of action for tDCS to modulate food cue-reactivity and cravings in people with obesity.
View Article and Find Full Text PDFLow-intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation, applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional MRI (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
April 2021
The combination of non-invasive brain stimulation interventions with human brain mapping methods have supported research beyond correlational associations between brain activity and behavior. Functional MRI (fMRI) partnered with transcranial electrical stimulation (tES) methods, i.e.
View Article and Find Full Text PDF