Publications by authors named "Rasoul Gheitaran"

It was demonstrated that the mechanism of the inner filter effect (IFE) can emerge well in the resonance Rayleigh scattering (RRS) technique and be utilized as a new analytical method in the design of innovative IFE-based sensors. To prove this process, silver nanocubes (Ag NCs) with tunable extinction spectra were selected as RRS probes, and three analytes, doxorubicin (DOX), sunitinib (SUN), and Alizarin Red S (ARS), were considered as the typical absorbers. In addition, in the presence of SUN as a typical analyte, the quenching of the RRS signal of Ag NCs, with λ of 419 nm, was linear in the range 0.

View Article and Find Full Text PDF

Despite the presence of light-sensitive species in the polyol synthesis of silver nanocubes, the influence of light on it has yet to be investigated. Herein, we demonstrated that light radiation, by generating plasmon-based hot electrons and subsequently increasing the reduction rate of Ag in the system, in addition to enhancing the growth rate of nanocubes, causes twinned seeds, which these seeds are then converted into nanorods and right bipyramids. With shorter, higher energy wavelengths, Ag reduction progresses more quickly, resulting in structures with more twin planes.

View Article and Find Full Text PDF

Polyol synthesis of silver nanocubes (Ag NCs) under dark conditions yielded nanoparticles with high uniformity and purity, as well as edge lengths of 42 nm with good stability and scattering cross-section. These nanoparticles were characterized by SEM, TEM, and Uv-vis spectroscopy. The presence of polyvinylpyrrolidone (PVP) as a capping agent on the surface of Ag NCs, as well as its satisfactory interaction level with Haloperidol (Hp) as an antipsychotic drug, has led to the use of these nanoparticles as Resonance RayleighScattering (RRS) probe to measure Hp.

View Article and Find Full Text PDF

Maghemite nanoparticles, as an adsorbent, was used for the removal of sulfur species including sulfide, sulfite and thiosulfate from waste water samples by ultrasonic-assisted adsorption method. The characterization of the prepared nanoparticles was carried out by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and BET technique. The nanoparticles well dispersed in the water.

View Article and Find Full Text PDF