Nowadays, the development of devices based on organic materials is an interesting research challenge. The performance of such devices is strongly influenced by material selection, material properties, design, and the manufacturing process. Usually, buckminsterfullerene (C60) is employed as electron transport material in organic photovoltaic (OPV) devices due to its high mobility.
View Article and Find Full Text PDFRecently, much research has focused on the search for new mixed donor-acceptor layers for applications in organic electronics. Organic heterostructures with layers based on the generation 1 poly(propylene thiophenoimine) (G1PPT) dendrimer, N,N'-diisopropylnaphthalene diimide (MNDI), and a combination of the two were prepared and their electrical properties were investigated. Single layers of G1PPT and MNDI and a mixed layer (G1PPT:MNDI) were obtained via spin coating on quartz glass, silicon, and glass/ITO substrates, using chloroform as a solvent.
View Article and Find Full Text PDFWe simulated numerically and demonstrated experimentally that the thermal emittance of a metasurface consisting of an array of rectangular metallic meta-atoms patterned on a layered periodic dielectric structure grown on top of a metallic layer can be tuned by changing several parameters. The resonance frequency, designed to be in the near-infrared spectral region, can be tuned by modifying the number of dielectric periods, and the polarization and incidence angle of the incoming radiation. In addition, the absorbance/emittance value at the resonant wavelength can be tuned by modifying the orientation of meta-atoms with respect to the illumination direction.
View Article and Find Full Text PDFNanocomposite films based on macrocyclic compounds (zinc phthalocyanine (ZnPc) and 5,10,15,20-tetra(4-pyridyl) 21H,23H-porphyrin (TPyP)) and metal oxide nanoparticles (ZnO or CuO) were deposited by matrix-assisted pulsed laser evaporation (MAPLE). 1,4-dioxane was used as a solvent in the preparation of MAPLE targets that favor the deposition of films with a low roughness, which is a key feature for their integration in structures for optoelectronic applications. The influence of the addition of ZnO nanoparticles (~20 nm in size) or CuO nanoparticles (~5 nm in size) in the ZnPc:TPyP mixture and the impact of the added metal oxide amount on the properties of the obtained composite films were evaluated in comparison to a reference layer based only on an organic blend.
View Article and Find Full Text PDFAs metasurfaces begin to find industrial applications there is a need to develop scalable and cost-effective fabrication techniques which offer sub-100 nm resolution while providing high throughput and large area patterning. Here we demonstrate the use of UV-Nanoimprint Lithography and Deep Reactive Ion Etching (Bosch and Cryogenic) towards this goal. Robust processes are described for the fabrication of silicon rectangular pillars of high pattern fidelity.
View Article and Find Full Text PDFLately, there is a growing interest in organic photovoltaic (OPV) cells due to the organic materials' properties and compatibility with various types of substrates. However, their efficiencies are low relative to the silicon ones; therefore, other ways (i.e.
View Article and Find Full Text PDFMaterials (Basel)
December 2021
We investigated the optical and electrical properties of flexible single and bi-layer organic heterostructures prepared by vacuum evaporation with a p-type layer of arylenevinylene oligomers, based on carbazole, 3,3' bis(N hexylcarbazole)vinylbenzene = L13, or triphenylamine, 1,4 bis [4 (N,N' diphenylamino)phenylvinyl] benzene = L78, and an n-type layer of 5,10,15,20-tetra(4-pyrydil)21H,23H-porphyne = TPyP. Transparent conductor films of Al-doped ZnO (AZO) with high transparency, >90% for wavelengths > 400 nm, and low resistivity, between 6.9 × 10 Ω·cm and 23 × 10 Ω·cm, were deposited by pulsed laser deposition on flexible substrates of polyethylene terephthalate (PET).
View Article and Find Full Text PDFThis study presents the design and manufacture of metasurface lenses optimized for focusing light with 1.55 µm wavelength. The lenses are fabricated on silicon substrates using electron beam lithography, ultraviolet-nanoimprint lithography and cryogenic deep reactive-ion etching techniques.
View Article and Find Full Text PDFEnvironmentally-friendly bio-organic materials have become the centre of recent developments in organic electronics, while a suitable interfacial modification is a prerequisite for future applications. In the context of researches on low cost and biodegradable resource for optoelectronics applications, the influence of a 2D nanostructured transparent conductive electrode on the morphological, structural, optical and electrical properties of nucleobases (adenine, guanine, cytosine, thymine and uracil) thin films obtained by thermal evaporation was analysed. The 2D array of nanostructures has been developed in a polymeric layer on glass substrate using a high throughput and low cost technique, UV-Nanoimprint Lithography.
View Article and Find Full Text PDFWe demonstrate that an anisotropic photonic crystal can modify the shape of a highly convergent incident optical beam. The beam shape engineering is relatively easy, and the photonic crystal is less alignment demanding than beam shapers that incorporate several optical systems. The shape of the output beam can be controlled by an appropriate choice of the angular divergence of the beam, the number of periods and the birefringence values and layer widths of the constituent materials.
View Article and Find Full Text PDF