Publications by authors named "Rasmuson A"

Hypothesis: It is hypothesised in this work that mesoscale clusters will be present in both undersaturated and supersaturated solutions of organic pharmaceutical molecules. These clusters, being loose aggregates, could be sensitive to shear forces experienced during filtration. Thus, comparing the behaviour of these clusters alongside nanoparticles during filtration-an important sample treatment parameter during crystallization-will elucidate qualitative differences from solid, crystalline nanoparticles of similar size.

View Article and Find Full Text PDF

Griseofulvin represents a rare case of a close-packed organic apohost that can clathrate selected volatile guests in a solid-gas fashion. Inclusion mechanisms and solvent exchange were investigated by a combination of single crystal and powder X-ray diffraction, coupled to optical microscopy and thermal analyses. In particular, gas diffusion and dissolution/recrystallization are alternatively observed, depending on the host polymorph, as well as the chemical nature of the guest and its physical state.

View Article and Find Full Text PDF

The nickel metal hydride (NiMH) battery technology has been designed for use in electric vehicles, solar-powered applications and power tools. These batteries contain the critical and strategic raw materials cobalt, nickel and several rare earth elements (REE). When designing a battery recycling process, there are several choices to be made regarding end-products and process chemicals.

View Article and Find Full Text PDF

Crystal nucleation shapes the structure and product size distribution of solid-state pharmaceuticals and is seeded by early-stage molecular self-assemblies formed in host solution. Here, molecular clustering of salicylamide in ethyl acetate, methanol, and acetonitrile was investigated using photon correlation spectroscopy. Cluster size steadily increased over 3 days and with concentration across the range from undersaturated to supersaturated solutions.

View Article and Find Full Text PDF

Hypothesis: The stabilization and isolation to dryness of drug nanoparticles has always been a challenge for nano-medicine production. In the past, the use of montmorillonite (MMT) clay carrier particles to adsorb drug nanoparticles and maintain their high surface area to volume ratio after isolation to dryness has proven to be effective. We hypothesise that the distribution of hydrophilic and hydrophobic patches on the clay's surface as well as its porosity/roughness, hinder the agglomeration of the drug nanoparticles to the extent that they retain their high surface area to volume ratio and display fast dissolution profiles.

View Article and Find Full Text PDF

This work presents two new solid forms, a polymorph and a solvate, of the antifungal active pharmaceutical ingredient griseofulvin (GSF). The novel forms were characterized by powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis, and their crystal structures were determined by single-crystal X-ray diffraction. The new polymorphic form (GSF Form VI) was obtained upon drying at room temperature the GSF-acetonitrile solvate.

View Article and Find Full Text PDF
Article Synopsis
  • The initial phases of molecular self-assembly are crucial for determining the purity and properties of organic materials.
  • This review highlights the importance of organic mesoscale clusters in the nucleation process and examines how their properties can be affected by sample treatment.
  • It discusses various detection methods used in research, such as light scattering and microscopy, and emphasizes the potential of these clusters to aid in discovering new crystal forms, especially for complex pharmaceutical ingredients.
View Article and Find Full Text PDF

The impact of single or combinations of additives on the generation of nanosuspensions of two poorly water-soluble active pharmaceutical ingredients (APIs), fenofibrate (FF) and dalcetrapib (DCP), and their isolation to the dry state via antisolvent (AS) crystallization followed by freeze-drying was explored in this work. Combinations of polymeric and surfactant additives such as poly(vinyl alcohol) or hydroxypropyl methyl cellulose and sodium docusate were required to stabilize nanoparticles (∼200-300 nm) of both APIs in suspension before isolation to dryness. For both FF and DCP, multiple additives generated the narrowest, most-stable particle size distribution, with the smallest particles in suspension, compared with using a single additive.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores nucleation in a cocrystal formed by -hydroxybenzoic acid and glutaric acid using various acetonitrile solutions, revealing that the cocrystal consistently acts as the nucleating phase.
  • Although the cocrystal is formed in non-stoichiometric solutions, its nucleation is harder compared to pure compounds, suggesting lower pre-exponential factors and different interfacial energies.
  • A relationship is observed between experimentally determined and theoretical pre-exponential factors across different systems, indicating a connection between nucleation rates and diffusion processes.
View Article and Find Full Text PDF
Article Synopsis
  • A new form of the drug piracetam, called Form VI, has been identified and analyzed using various techniques like X-ray powder diffraction and infrared spectroscopy, showing a unique characteristic peak at 24.2° (2θ).
  • Form VI is metastable compared to earlier forms (Form II and Form III), converting to Form II in ethanol within 15 minutes, while remaining stable in isopropanol for over 6 hours.
  • Experiments with piracetam in ethanol and isopropanol solutions showed that Form VI predominates at lower temperatures, while higher temperatures favor Form II, indicating that nucleation is easier in ethanol due to lower energy barriers.
View Article and Find Full Text PDF

The nucleation behavior of the theophylline-salicylic acid 1:1 (THP:SA) cocrystal in chloroform has been investigated and compared with the corresponding behavior of the pure compounds. Induction times have been determined at different supersaturations at 10 °C under each condition in approximately 40-80 repetition experiments in 20 mL vials. Nucleation times, extracted from the median induction times by accounting for a nucleus growth time, have been used to determine the interfacial energy and the pre-exponential factor within the classical nucleation theory.

View Article and Find Full Text PDF

Crystallization experiments performed with highly supercooled solutions produced highly pure (>99 wt %) and highly crystalline mesocrystals of curcumin from impure solutions (∼22% of two structurally similar impurities) in one step. These mesocrystals exhibited a crystallographic hierarchy and were composed of perfectly or imperfectly aligned nanometer-thick crystallites. X-ray diffraction and spectroscopic analysis confirmed that the spherulites are a new solid form of curcumin.

View Article and Find Full Text PDF

The thermodynamic relationship between FI and FII of ethyl 4-aminobenzoate (benzocaine) has been investigated. Slurry conversion experiments show that the transition temperature below which FI is stable is located between 302 K-303 K (29 °C-30 °C). The polymorphs FI and FII have been characterised by infrared spectroscopy (IR), Raman spectroscopy, transmission powder X-ray diffraction (XRPD) and differential scanning calorimetry (DSC).

View Article and Find Full Text PDF

The solubility of the racemic solid phase of ketoprofen (KTP) in methanol, ethanol, isopropanol, butanol, acetonitrile, ethyl acetate, 1,4-dioxane and toluene has been determined between 273 and 303 K by a gravimetric method. FTIR and Raman spectroscopy, SEM and PXRD, have been used to characterise the solid phase. The melting data and heat capacity of solid and melt have been determined by DSC, and used to estimate fusion thermodynamics and the activity of the solid phase as functions of temperature.

View Article and Find Full Text PDF

Nanoparticle and microplastic (colloid) transport behaviors impact strategies for groundwater protection and remediation. Complex colloid transport behaviors of anionic nano- and micro-sized colloids have been previously elucidated via independent experiments in chemically-cleaned and amended granular media with grain sizes in the range of fine to coarse sand (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • The solid-liquid solubility of two polymorphs of a compound was measured in n-propanol using both isothermal and low heating rate methods, with the latter showing superior results due to differences in crystal settling.
  • Experimental results indicate that FII is the stable polymorph across a temperature range of 268 K to 308 K.
  • The solubility data was successfully correlated and predicted to the melting point using a semi-empirical regression model, revealing a positive deviation from Raoult's law, where solute activity coefficients decreased with rising temperatures.
View Article and Find Full Text PDF

Lesser pathogen prevalence is well recognized in granular versus fractured aquifers; however, the impact of residence time (inactivation/death) versus removal (pore-scale delivery to surfaces) on pathogen prevalence remains unaddressed. The objective of this study was to examine the specific role of pore-scale delivery to surfaces (removal) as an explanation of contrasting pathogen prevalence in granular versus fractured media from Wisconsin. Inactivation/death was obviated by the use of nonbiological colloids in column transport experiments conducted in representative media from the two Wisconsin sites.

View Article and Find Full Text PDF

Colloid attachment and detachment behaviors concern a wide range of environmental contexts but have typically been mechanistically predicted exclusive of one another despite their obvious coupling. Furthermore, previous mechanistic prediction often addressed packed column contexts, wherein specific forces and torques on the colloid could not be well-constrained, preventing robust predictions. These weaknesses were addressed through direct observation experiments under conditions where perfect sink assumptions fail and allow calibration of the contact between the colloid and collector.

View Article and Find Full Text PDF

The solubility of butamben has been measured gravimetrically in pure methanol, 1-propanol, 2-propanol, 1-butanol, and toluene over the temperature range 268-298 K. Polymorph transition and melting temperatures, associated enthalpy changes, and the heat capacity of the solid forms and the supercooled melt have been measured by differential scanning calorimetry. Based on extrapolated calorimetric data, the Gibbs energy, enthalpy and entropy of fusion, and the activity of solid butamben (the ideal solubility) have been calculated from below ambient temperature up to the melting point.

View Article and Find Full Text PDF

Recent experiments revealed that roughness decreases the gap in colloid attachment between favorable (repulsion absent) and unfavorable (repulsion present) conditions through a combination of hydrodynamic slip and surface interactions with asperities. Hydrodynamic slip was calibrated to experimentally observed tangential colloid velocities, demonstrating that slip length was equal to maximum asperity relief, thereby providing a functional relationship between slip and roughness metrics. Incorporation of the slip length in mechanistic particle trajectory simulations yielded the observed modest decrease in attachment over rough surfaces under favorable conditions, with the observed decreased attachment being due to reduced colloid delivery rather than decreased attraction.

View Article and Find Full Text PDF

We herein demonstrate the cause of well-observed variant transport behaviors for apparently identical colloids in porous media under conditions of colloid-collector repulsion (unfavorable attachment conditions). We demonstrate that variant colloid transport behavior under unfavorable conditions can be explained by inherently variable colloid residence times prior to arrest on grains (collectors). We demonstrate that the residence time distributions derived from particle trajectory simulations incorporating representative nanoscale heterogeneity provide quantitative prediction of colloid transport under unfavorable conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how fenoxycarb molecules interact and aggregate in isopropanol solutions using several analytical techniques like dynamic light scattering and infrared spectroscopy.
  • Clusters of molecules can grow up to almost one micrometre in size and tend to increase in size with higher solute concentrations and longer time periods under stagnant conditions.
  • The research also notes that factors like temperature, filtration, and concentration levels significantly affect cluster sizes and their behavior, pointing to complex dynamics in solution that influence molecular interactions.
View Article and Find Full Text PDF

The influence of the solvent in nucleation of tolbutamide, a medium-sized, flexible and polymorphic organic molecule, has been explored by measuring nucleation induction times, estimating solvent-solute interaction enthalpies using molecular modelling and calorimetric data, probing interactions and clustering with spectroscopy, and modelling solvent-dependence of molecular conformation in solution. The nucleation driving force required to reach the same induction time is strongly solvent-dependent, increasing in the order: acetonitrile View Article and Find Full Text PDF

The development of solid dosage forms and manufacturing processes are governed by complex physical properties of the powder and the type of pharmaceutical unit operation the manufacturing processes employs. Suitable powder flow properties and compactability are crucial bulk level properties for tablet manufacturing by direct compression. It is also generally agreed that small scale powder flow measurements can be useful to predict large scale production failure.

View Article and Find Full Text PDF

Laboratory diagnosis of lupus anticoagulant (LA) is based on prolongation in at least one coagulation assay (diluted Russell's viper venom time - dRVVT or activated partial thromboplastin time - aPTT), which normalises after addition of phospholipids. Both assays may be influenced by anticoagulants and therefore LA should not be tested during warfarin or heparin treatment. It has been shown (primarily in vitro) that direct oral anticoagulants (DOACs - dabigatran [DAB], rivaroxaban [RIV] and apixaban [API]) may also influence LA testing.

View Article and Find Full Text PDF