Publications by authors named "Rasmus L Kaeseler"

Despite having the potential to improve the lives of severely paralyzed users, non-invasive Brain Computer Interfaces (BCI) have yet to be integrated into their daily lives. The widespread adoption of BCI-driven assistive technology is hindered by its lacking usability, as both end-users and researchers alike find fault with traditional EEG caps. In this paper, we compare the usability of four EEG recording devices for Steady-State Visually Evoked Potentials (SSVEP)-BCI applications: an EEG cap (active gel electrodes), two headbands (passive gel or active dry electrodes), and two adhesive electrodes placed on each mastoid.

View Article and Find Full Text PDF

Individuals with severe tetraplegia can benefit from brain-computer interfaces (BCIs). While most movement-related BCI systems focus on right/left hand and/or foot movements, very few studies have considered tongue movements to construct a multiclass BCI. The aim of this study was to decode four movement directions of the tongue (left, right, up, and down) from single-trial pre-movement EEG and provide a feature and classifier investigation.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) have been proven to be useful for stroke rehabilitation, but there are a number of factors that impede the use of this technology in rehabilitation clinics and in home-use, the major factors including the usability and costs of the BCI system. The aims of this study were to develop a cheap 3D-printed wrist exoskeleton that can be controlled by a cheap open source BCI (OpenViBE), and to determine if training with such a setup could induce neural plasticity. Eleven healthy volunteers imagined wrist extensions, which were detected from single-trial electroencephalography (EEG), and in response to this, the wrist exoskeleton replicated the intended movement.

View Article and Find Full Text PDF