Bycatch in gillnets is a global issue and mitigation measures that balance target species catch rates, bycatch reduction and fisher support are scarce. In the North Atlantic lumpfish fisheries, bycatch includes marine mammals and seabirds, and there are no permanent technical initiatives to reduce the bycatch. In the West Greenland fishery, common eider bycatch is several thousand individuals annually.
View Article and Find Full Text PDFThe occurrence of natal homing in marine fish remains a fundamental question in fish ecology as its unequivocal demonstration requires tracking of individuals from fertilization to reproduction. Here, we provide evidence of long-distance natal homing (>1000 km) over more than 60 years in Atlantic cod (Gadus morhua), through genetic analysis of archived samples from marked and recaptured individuals. Using a high differentiation single-nucleotide polymorphism assay, we demonstrate that the vast majority of cod tagged in West Greenland and recaptured on Icelandic spawning grounds belonged to the Iceland offshore population, strongly supporting a hypothesis of homing.
View Article and Find Full Text PDFFishing and climate change impact the demography of marine fishes, but it is generally ignored that many species are made up of genetically distinct locally adapted populations that may show idiosyncratic responses to environmental and anthropogenic pressures. Here, we track 80 years of Atlantic cod (Gadus morhua) population dynamics in West Greenland using DNA from archived otoliths in combination with fish population and niche based modeling. We document how the interacting effects of climate change and high fishing pressure lead to dramatic spatiotemporal changes in the proportions and abundance of different genetic populations, and eventually drove the cod fishery to a collapse in the early 1970s.
View Article and Find Full Text PDFCollections of historical tissue samples from fish (e.g. scales and otoliths) stored in museums and fisheries institutions are precious sources of DNA for conducting retrospective genetic analysis.
View Article and Find Full Text PDFAccurate prediction of species distribution shifts in the face of climate change requires a sound understanding of population diversity and local adaptations. Previous modeling has suggested that global warming will lead to increased abundance of Atlantic cod (Gadus morhua) in the ocean around Greenland, but the dynamics of earlier abundance fluctuations are not well understood. We applied a retrospective spatiotemporal population genomics approach to examine the temporal stability of cod population structure in this region and to search for signatures of divergent selection over a 78-year period spanning major demographic changes.
View Article and Find Full Text PDF