Publications by authors named "Rasmiah S Almufarij"

Activated carbon/BiOI nanocomposites were successfully synthesized through a simplistic method. The produced composites were then characterized using XRD, TEM, SEM-EDX, and XPS. The results showed that BiOI with a tetragonal crystal structure had been formed.

View Article and Find Full Text PDF

The utilization of dye adsorption through metal-organic frameworks represents an eco-friendly and highly effective approach in real water treatment. Here, ultrasound assisted adsorption approach was employed for the remediation of three dyes including methylene blue (MB), malachite green (MG), and congo red (CR) from real water samples using zirconium(IV)-based adsorbent (UiO-66-NH). The adsorbent was characterized for structural, elemental, thermal and morphological features through XRD, XPS, FTIR, thermogravimetric analysis, SEM, BET , and Raman spectroscopy.

View Article and Find Full Text PDF

The efficient separation of oil and water is a significant challenge worldwide due to the increasing frequency of industrial oily wastewater. Previous work by our group utilizes biological metal-organic framework-based superhydrophobic (S.P) textile fabric for oil/water separation.

View Article and Find Full Text PDF

In this paper, we present a sustainable approach for the creation of superhydrophobic (SP) coating on a stainless-steel substrate based on a biological metal-organic framework (MOF). The MOF was synthesized using aspartic acid as a linker and copper ions as a core metal. Two SP coatings were well constructed on stainless steel utilizing electrodeposition of nickel (Ni) and nickel altered by MOF (Ni@Bio-MOF) coatings followed by soaking in a solution of stearic acid in ethanol.

View Article and Find Full Text PDF

Besides natural sunlight and expensive artificial lights, economical indoor white light can play a significant role in activating a catalyst for photocatalytic removal of organic toxins from contaminated water. In the current effort, CeO has been modified with Ni, Cu, and Fe through doping methodology to study the removal of 2-chlorophenol (2-CP) in the illumination of 70 W indoor LED white light. The absence of additional diffractions due to the dopants and few changes such as reduction in peaks' height, minor peak shift at 2θ (28.

View Article and Find Full Text PDF

Water pollution has invaded seas, rivers, and tap water worldwide. This work employed commercial Mesquite charcoal as a low-cost precursor for fabricating Mesquite carbon nanoparticles (MUCNPs) using a ball-milling process. The scanning electron energy-dispersive microscopy results for MUCNPs revealed a particle size range of 52.

View Article and Find Full Text PDF

The conductive composite Co@SnO-PANI was successfully synthesized using hydrothermal/oxidative synthesis. Using differential pulse voltammetry, a glassy carbon electrode modified with a CoSnO-PANI (polyaniline)-based electrochemical biosensor has been created for the quick detection of two phenolics, hydroquinone (Hq) and catechol (Cat). Differential pulse voltammetry (DPV) measurements revealed two well-resolved, strong peaks for GCE@Co-SnO-PANI, which corresponded to the oxidation of Hq and Cat at 275.

View Article and Find Full Text PDF

Pharmaceutical pollution has pervaded many water resources all over the globe. The propagation of this health threat drew the researchers' concern in seeking an efficient solution. This study introduced toilet paper waste as a precursor for carbon nanoparticles (CRNPs).

View Article and Find Full Text PDF

The spread of organic pollutants in water spoils the environment, and among the best-known sorbents for removing organic compounds are carbonaceous materials. Sunflower seed waste (SFSW) was employed as a green and low-cost precursor to prepare carbon nanoparticles (CNPs) via pyrolysis, followed by a ball-milling process. The CNPs were treated with a nitric-sulfuric acid mixture (1:1) at 100 °C.

View Article and Find Full Text PDF