This open-label, phase 1 study was conducted with healthy adult participants to evaluate the potential drug-drug interaction between rilzabrutinib and quinidine (an inhibitor of P-glycoprotein [P-gp] and CYP2D6) or rifampin (an inducer of CYP3A and P-gp). Plasma concentrations of rilzabrutinib were measured after a single oral dose of rilzabrutinib 400 mg administered on day 1 and again, following a wash-out period, after co-administration of rilzabrutinib and quinidine or rifampin. Specifically, quinidine was given at a dose of 300 mg every 8 hours for 5 days from day 7 to day 11 (N = 16) while rifampin was given as 600 mg once daily for 11 days from day 7 to day 17 (N = 16) with rilzabrutinib given in the morning of day 10 (during quinidine dosing) or day 16 (during rifampin dosing).
View Article and Find Full Text PDFBackground: An activated, proinflammatory endothelium is a key feature in the development of complications of obesity and type 2 diabetes and can be caused by insulin resistance in endothelial cells.
Methods: We analyzed primary human endothelial cells by RNA sequencing to discover novel insulin-regulated genes and used endothelial cell culture and animal models to characterize signaling through CXCR4 (C-X-C motif chemokine receptor 4) in endothelial cells.
Results: CXCR4 was one of the genes most potently regulated by insulin, and this was mediated by PI3K (phosphatidylinositol 3-kinase), likely through FoxO1, which bound to the CXCR4 promoter.
Endothelial cell insulin resistance contributes to the development of vascular complications in diabetes. Hypoxia-inducible factors (HIFs) modulate insulin sensitivity, and we have previously shown that a negative regulator of HIF activity, CREB-binding protein/p300 (CBP/p300) interacting transactivator-2 (CITED2), is increased in the vasculature of people with type 2 diabetes. Therefore, we examined whether CITED2 regulates endothelial insulin sensitivity.
View Article and Find Full Text PDFInsulin and IGF-1 actions in vascular smooth muscle cells (VSMC) are associated with accelerated arterial intima hyperplasia and restenosis after angioplasty, especially in diabetes. To distinguish their relative roles, we delete insulin receptor (SMIRKO) or IGF-1 receptor (SMIGF1RKO) in VSMC and in mice. Here we report that intima hyperplasia is attenuated in SMIRKO mice, but not in SMIGF1RKO mice.
View Article and Find Full Text PDFKey Points: Insulin enters the brain from the blood via a saturable transport system. It is unclear how insulin is transported across the blood-brain barrier (BBB). Using two models of the signalling-related insulin receptor loss or inhibition, we show insulin transport can occur in vivo without the signalling-related insulin receptor.
View Article and Find Full Text PDFObjective: The objective of this study is to evaluate whether exogenously induced hyperinsulinemia may increase the development of atherosclerosis.
Approach And Results: Hyperinsulinemia, induced by exogenous insulin implantation in high-fat fed (60% fat HFD) apolipoprotein E-deficient mice (ApoE) mice, exhibited insulin resistance, hyperglycemia, and hyperinsulinemia. Atherosclerosis was measured by the accumulation of fat, macrophage, and extracellular matrix in the aorta.
Insulin receptors (IRs) on endothelial cells may have a role in the regulation of transport of circulating insulin to its target tissues; however, how this impacts on insulin action in vivo is unclear. Using mice with endothelial-specific inactivation of the IR gene (EndoIRKO), we find that in response to systemic insulin stimulation, loss of endothelial IRs caused delayed onset of insulin signaling in skeletal muscle, brown fat, hypothalamus, hippocampus, and prefrontal cortex but not in liver or olfactory bulb. At the level of the brain, the delay of insulin signaling was associated with decreased levels of hypothalamic proopiomelanocortin, leading to increased food intake and obesity accompanied with hyperinsulinemia and hyperleptinemia.
View Article and Find Full Text PDFRationale: Activation of monocytes/macrophages by hyperlipidemia associated with diabetes mellitus and obesity contributes to the development of atherosclerosis. PKCδ (protein kinase C δ) expression and activity in monocytes were increased by hyperlipidemia and diabetes mellitus with unknown consequences to atherosclerosis.
Objective: To investigate the effect of PKCδ activation in macrophages on the severity of atherosclerosis.
The risk of several cancers, including colorectal cancer, is increased in patients with obesity and type 2 diabetes, conditions characterised by hyperinsulinaemia and insulin resistance. Because hyperinsulinaemia itself is an independent risk factor for cancer development, we examined tissue-specific insulin action in intestinal tumour formation. In vitro, insulin increased proliferation of intestinal tumour epithelial cells by almost two-fold in primary culture of tumour cells from Apc mice.
View Article and Find Full Text PDFAims/hypothesis: Accelerated migration and proliferation of vascular smooth muscle cells (VSMCs) enhances arterial restenosis after angioplasty in insulin resistance and diabetes. Elevation of Src homology 2-containing protein tyrosine phosphatase 1 (SHP-1) induces apoptosis in the microvasculature. However, the role of SHP-1 in intimal hyperplasia and restenosis has not been clarified in insulin resistance and diabetes.
View Article and Find Full Text PDFBackground: Obesity and type 2 diabetes are major risk factors for peripheral arterial disease in humans, which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO).
View Article and Find Full Text PDFEndothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1) in the endothelia of mice () increased insulin signaling and function in the aorta.
View Article and Find Full Text PDFProtein kinase C (PKC) activation, induced by hyperglycemia and angiotensin II (AngII), inhibited insulin-induced phosphorylation of Akt/endothelial nitric oxide (eNOS) by decreasing tyrosine phosphorylation of IRS2 (p-Tyr-IRS2) in endothelial cells. PKC activation by phorbol ester (phorbol myristate acetate [PMA]) reduced insulin-induced p-Tyr-IRS2 by 46% ± 13% and, similarly, phosphorylation of Akt/eNOS. Site-specific mutational analysis showed that PMA increased serine phosphorylation at three sites on IRS2 (positions 303, 343, and 675), which affected insulin-induced tyrosine phosphorylation of IRS2 at positions 653, 671, and 911 (p-Tyr-IRS2) and p-Akt/eNOS.
View Article and Find Full Text PDFRationale: Loss of insulin action in the endothelium can cause endothelial dysfunction and atherosclerosis. Hyperglycemia and elevated fatty acids induced by diabetes mellitus can activate protein kinase C-β isoforms and selectively inhibit insulin signaling via phosphatidylinositol 3-kinase/Akt pathway to inhibit the activation of endothelial nitric oxide synthase and metabolic actions.
Objective: To demonstrate that overexpressing protein kinase C-β2 isoform in endothelial cells can cause selective insulin resistance and exacerbate atherosclerosis in the aorta.
In patients with diabetes, atherosclerosis is the main reason for impaired life expectancy, and diabetic nephropathy and retinopathy are the largest contributors to end-stage renal disease and blindness, respectively. An improved therapeutic approach to combat diabetic vascular complications might include blocking mechanisms of injury as well as promoting protective or regenerating factors, for example by enhancing the action of insulin-regulated genes in endothelial cells, promoting gene programs leading to induction of antioxidant or anti-inflammatory factors, or improving the sensitivity to vascular cell survival factors. Such strategies could help prevent complications despite suboptimal metabolic control.
View Article and Find Full Text PDFPurpose: To correlate changes between VEGF expression with systemic and retinal oxidative stress and inflammation in rodent models of obesity induced insulin resistance and diabetes.
Methods: Retinal VEGF mRNA and protein levels were assessed by RT-PCR and VEGF ELISA, respectively. Urinary 8-hydroxydeoxyguanosine (8-OHdG), blood levels of C-reactive protein (CRP), malondialdehyde (MDA), and CD11b/c positive cell ratio were used as systemic inflammatory markers.
Arterioscler Thromb Vasc Biol
September 2012
Impaired insulin signaling is central to development of the metabolic syndrome and can promote cardiovascular disease indirectly through development of abnormal glucose and lipid metabolism, hypertension, and a proinflammatory state. However, insulin's action directly on vascular endothelium, atherosclerotic plaque macrophages, and in the heart, kidney, and retina has now been described, and impaired insulin signaling in these locations can alter progression of cardiovascular disease in the metabolic syndrome and affect development of microvascular complications of diabetes mellitus. Recent advances in our understanding of the complex pathophysiology of insulin's effects on vascular tissues offer new opportunities for preventing these cardiovascular disorders.
View Article and Find Full Text PDFTo characterize glucagon-like peptide (GLP)-1 signaling and its effect on renal endothelial dysfunction and glomerulopathy. We studied the expression and signaling of GLP-1 receptor (GLP-1R) on glomerular endothelial cells and the novel finding of protein kinase A-dependent phosphorylation of c-Raf at Ser259 and its inhibition of angiotensin II (Ang II) phospho-c-Raf(Ser338) and Erk1/2 phosphorylation. Mice overexpressing protein kinase C (PKC)β2 in endothelial cells (EC-PKCβ2Tg) were established.
View Article and Find Full Text PDFThis study characterizes the effect of glucose-induced activation of protein kinase Cδ (PKCδ) and Src homology-2 domain-containing phosphatase-1 (SHP-1) expression on vascular endothelial growth factor (VEGF) actions in glomerular podocytes in cultures and in glomeruli of diabetic rodents. Elevation of glucose levels induced PKCδ and p38 mitogen-activated protein kinase (p38 MAPK) to increase SHP-1 expression, increased podocyte apoptosis, and inhibited VEGF activation in podocytes and glomerular endothelial cells. The adverse effects of high glucose levels can be negated by molecular inhibitors of PKCδ, p38MAPK, and SHP-1 and only partially reduced by antioxidants and nuclear factor-κB (NF-κB) inhibitor.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
May 2012
Objective: To determine the contribution of hyperinsulinemia to atherosclerosis development.
Methods And Results: Apolipoprotein E (Apoe) null mice that had knockout of a single allele of the insulin receptor (Insr) gene were compared with littermate Apoe null mice with intact insulin receptors. Plasma insulin levels in Insr haploinsufficient/Apoe null mice were 50% higher in the fasting state and up to 69% higher during a glucose tolerance test, but glucose tolerance was not different in the 2 groups.
Aim: Chronic heart failure is associated with endothelial dysfunction and insulin resistance. The aim of this investigation was to study insulin-stimulated endothelial function and glucose uptake in skeletal muscles in patients with heart failure in comparison to patients with type 2 diabetes.
Methods: Twenty-three patients with systolic heart failure and no history of diabetes, seven patients with both systolic heart failure and type 2 diabetes, 19 patients with type 2 diabetes, and ten healthy controls were included in the study.
The regulation of endothelial function by insulin is consistently abnormal in insulin-resistant states and diabetes. Protein kinase C (PKC) activation has been reported to inhibit insulin signaling selectively in endothelial cells via the insulin receptor substrate/PI3K/Akt pathway to reduce the activation of endothelial nitric-oxide synthase (eNOS). In this study, it was observed that PKC activation differentially inhibited insulin receptor substrate 1/2 (IRS1/2) signaling of insulin's activation of PI3K/eNOS by decreasing only tyrosine phosphorylation of IRS2.
View Article and Find Full Text PDFBackground: Carvedilol has been shown to be superior to metoprolol tartrate to improve clinical outcomes in patients with heart failure (HF), yet the mechanisms responsible for these differences remain unclear. We examined if there were differences in endothelial function, insulin stimulated endothelial function, 24 hour ambulatory blood pressure and heart rate during treatment with carvedilol, metoprolol tartrate and metoprolol succinate in patients with HF.
Methods: Twenty-seven patients with mild HF, all initially treated with carvedilol, were randomized to a two-month treatment with carvedilol, metoprolol tartrate or metoprolol succinate.