Somatic hypermutation (SHM) introduces point mutations into immunoglobulin (Ig) genes but also causes mutations in other parts of the genome. We have used lentiviral SHM reporter vectors to identify regions of the genome that are susceptible ("hot") and resistant ("cold") to SHM, revealing that SHM susceptibility and resistance are often properties of entire topologically associated domains (TADs). Comparison of hot and cold TADs reveals that while levels of transcription are equivalent, hot TADs are enriched for the cohesin loader NIPBL, super-enhancers, markers of paused/stalled RNA polymerase 2, and multiple important B cell transcription factors.
View Article and Find Full Text PDFThe mitochondrial antiviral signaling protein (MAVS) mediates the activation of NFkappaB and IRFs and the induction of interferons in response to viral infection. In vitro studies have also suggested that MAVS is required for interferon induction by cytosolic DNA, but the in vivo evidence is lacking. By generating MAVS-deficient mice, here we show that loss of MAVS abolished viral induction of interferons and prevented the activation of NFkappaB and IRF3 in multiple cell types, except plasmacytoid dendritic cells (pDCs).
View Article and Find Full Text PDFRecent studies have uncovered two signaling pathways that activate the host innate immunity against viral infection. One of the pathways utilizes members of the Toll-like receptor (TLR) family to detect viruses that enter the endosome through endocytosis. The TLR pathway induces interferon production through several signaling proteins that ultimately lead to the activation of the transcription factors NF-kappaB, IRF3 and IRF7.
View Article and Find Full Text PDFHepatitis C virus (HCV) is a global epidemic manifested mainly by chronic infection. One strategy that HCV employs to establish chronic infection is to use the viral Ser protease NS3/4A to cleave some unknown cellular targets involved in innate immunity. Here we show that the target of NS3/4A is the mitochondrial antiviral signaling protein, MAVS, that activates NF-kappaB and IFN regulatory factor 3 to induce type-I interferons.
View Article and Find Full Text PDFViral infection triggers host innate immune responses through activation of the transcription factors NF-kappaB and IRF 3, which coordinately regulate the expression of type-I interferons such as interferon-beta (IFN-beta). Herein, we report the identification of a novel protein termed MAVS (mitochondrial antiviral signaling), which mediates the activation of NF-kappaB and IRF 3 in response to viral infection. Silencing of MAVS expression through RNA interference abolishes the activation of NF-kappaB and IRF 3 by viruses, thereby permitting viral replication.
View Article and Find Full Text PDFThe activation of NF-kappaB and IKK requires an upstream kinase complex consisting of TAK1 and adaptor proteins such as TAB1, TAB2, or TAB3. TAK1 is in turn activated by TRAF6, a RING domain ubiquitin ligase that facilitates the synthesis of lysine 63-linked polyubiquitin chains. Here we present evidence that TAB2 and TAB3 are receptors that bind preferentially to lysine 63-linked polyubiquitin chains through a highly conserved zinc finger (ZnF) domain.
View Article and Find Full Text PDF