Publications by authors named "Rashmi Tupe"

The transcription factor known as sterol regulatory element-binding protein (SREBP) and the glycation pathways, specifically the formation of Advanced Glycation End Products (AGEs), have a significant and deleterious impact on the kidney. They alter renal lipid metabolism and promote glomerulosclerosis, mesangial cell expansion, tubulointerstitial fibrosis, and inflammation, leading to diabetic nephropathy (DN) progression. Although several pieces of scientific evidence are reported for potential causes of glycation and lipotoxicity in DN, the underlying mechanism of renal lipid accumulation still needs to be fully understood.

View Article and Find Full Text PDF

Ethnopharmacological Prevalence: Hyperglycemia in diabetes increases the generation of advanced glycation end products (AGEs) through non-enzymatic reactions. The interaction between AGEs and their receptors (RAGE) leads to oxidative and inflammatory stress, which plays a pivotal role in developing diabetic nephropathy. Syzygium cumini (SC) L.

View Article and Find Full Text PDF

Nonenzymatic glycation of proteins is accelerated in the context of elevated blood sugar levels in diabetes. Vitamin and mineral deficiencies are strongly linked to the onset and progression of diabetes. The antiglycation ability of various water- and fat-soluble vitamins, along with trace minerals like molybdenum (Mo), manganese (Mn), magnesium (Mg), chromium, etc.

View Article and Find Full Text PDF

Diabetes-mediated development of micro and macro-vascular complications is a global concern. One of the factors is hyperglycemia induced the non-enzymatic formation of advanced glycation end products (AGEs). Accumulated AGEs bind with receptor of AGEs (RAGE) causing inflammation, oxidative stress and extracellular matrix proteins (ECM) modifications responsible for fibrosis, cell damage and tissue remodeling.

View Article and Find Full Text PDF

Background: The inflammatory response in diabetes is strongly correlated with increasing amounts of advanced glycation end products (AGEs), methylglyoxal (MGO), aldosterone (Aldo), and activation of macrophages. Aldo is known to be associated with increased pro-inflammatory responses in general, but its significance in inflammatory responses under glycated circumstances has yet to be understood. In the current work, the aim of our study was to study the macrophage immune response in the presence of AGEs, MGO, and Aldo to comprehend their combined impact on diabetes-associated complications.

View Article and Find Full Text PDF

In hyperglycemia, accelerated glycation and oxidative stress give rise to many diabetic complications, such as diabetic cardiomyopathy (DCM). Glycated human serum albumin (GHSA) has disturbed structural integrity and hampered functional capabilities. When GHSA accumulates around cardiac cells, Nrf-2 is dysregulated, aiding oxidative stress.

View Article and Find Full Text PDF

The present work elucidates the role of colchicine (COL) on albumin glycation and cellular oxidative stress in diabetic cardiomyopathy (DCM). Human serum albumin (HSA) was glycated with methylglyoxal in the presence of COL (2.5, 3.

View Article and Find Full Text PDF

Ethnopharmacology Relevance: Syzygium cumini (L.) Skeels (SC), an ancient medicinal plant, is used as a complementary and alternative medicine for treating diabetes mellitus and its associated complications, such as diabetic nephropathy (DN). Phytochemicals present in SC homeopathic formulations possess anti-glycemic, anti-glycation, anti-inflammatory, and antioxidant properties.

View Article and Find Full Text PDF

Background: The growing interest in identifying the mode of action of traditional medicines has strengthened its research. () is commonly prescribed in homeopathy and is a rich source of phytochemicals.

Objective: The present study aims to shed light on the anti-glycation molecular mechanism of mother tincture (MT), 30c, and 200c on glycated human serum albumin (HSA) by multi-spectroscopic and microscopic approaches.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) interaction with its receptor (RAGE) and aldosterone (Aldo) through the mineralocorticoid receptor (MR) activates Rac-1 and NF-κB independently in diabetic nephropathy (DN). However, the crosstalk of Aldo with AGEs-RAGE is still unresolved. Our study examined the impact of the AGEs-Aldo complex on renal cells and its effect on the RAGE-MR interaction.

View Article and Find Full Text PDF

Glycation is a non-enzymatic reaction wherein sugars or dicarbonyls such as methylglyoxal (MGO) and glyoxal (GO) react with proteins, leading to protein inactivation. The hydrolysing enzyme human deglycase-1 (hDJ-1) is reported to decrease glycative stress by deglycating the modified proteins, specifically at cysteine, lysine, and arginine sites. This specificity of hDJ-1 is thought to be regulated by its active site cysteine residue (Cys106).

View Article and Find Full Text PDF

Diabetes and its complications, Alzheimer's disease (AD), and Parkinson's disease (PD) are increasing gradually, reflecting a global threat vis-à-vis expressing the essentiality of a substantial paradigm shift in research and remedial actions. Protein glycation is influenced by several factors, like time, temperature, pH, metal ions, and the half-life of the protein. Surprisingly, most proteins associated with metabolic and neurodegenerative disorders are generally long-lived and hence susceptible to glycation.

View Article and Find Full Text PDF

Diabetes and cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Diabetes increases cardiovascular risk through hyperglycemia and atherosclerosis. Chronic hyperglycemia accelerates glycation reaction, which forms advanced glycation end products (AGEs).

View Article and Find Full Text PDF

The glycation of various biomolecules is the root cause of many pathological conditions associated with diabetic nephropathy and end-stage kidney disease. Glycation imbalances metabolism and increases renal cell injury. Numerous therapeutic measures have narrowed down the adverse effects of endogenous glycation, but efficient and potent measures are miles away.

View Article and Find Full Text PDF

Glycation refers to carbonyl group condensation of the reducing sugar with the free amino group of protein, which forms Amadori products and advanced glycation end products (AGEs). These AGEs alter protein structure and function by configuring a negative charge on the positively charged arginine and lysine residues. Glycation plays a vital role in the pathogenesis of metabolic diseases, brain disorders, aging, and gut microbiome dysregulation with the aid of 3 mechanisms: (i) formation of highly reactive metabolic pathway-derived intermediates, which directly affect protein function in cells, (ii) the interaction of AGEs with its associated receptors to create oxidative stress causing the activation of transcription factor NF-κB, and (iii) production of extracellular AGEs hinders interactions between cellular and matrix molecules affecting vascular and neural genesis.

View Article and Find Full Text PDF

In diabetic nephropathy, hyperglycemia elevates albumin glycation and also results in increased plasma aldosterone. Both glycation and aldosterone are reported to cause oxidative stress by downregulating the NRF-2 pathway and thereby resulting in reduced levels of antioxidants and glycation detoxifying enzymes. We hypothesize that an interaction between aldosterone and glycated albumin may be responsible for amplified oxidative stress and concomitant renal cell damage.

View Article and Find Full Text PDF

Nanoparticles and protein bioconjugates have been studied for multiple biomedical applications. We sought to investigate the interaction and structural modifications of bovine serum albumin (BSA) with iron oxide nanoparticles (IONPs). The IONPs were green synthesized using E.

View Article and Find Full Text PDF

Background: The secondary vascular complications in diabetes mellitus (DM) are contributed by acute as well as inflammatory responses which get activated due to interaction between glycation adducts and respective receptors.

Aim: The present work was performed to understand the relationship between Advanced glycation end products (AGEs)-receptor for advanced glycation end products (RAGE) interaction with oxidative stress and inflammation in vascular complications.

Methods: For the present work we recruited 103 controls, 200 patients with type 2 DM, and 200 patients with Diabetic complications.

View Article and Find Full Text PDF

Inhibition of non-enzymatic glycation processes is an essential aspect of treating type 2 diabetes and related complications. In this study, piperine's preventative, simultaneous and curative effect in glucose-induced albumin glycation was examined by analyzing the structural and functional markers of albumin. The protective and antioxidant influence of piperine on erythrocytes was assessed by examining cellular membrane modifications with antioxidant status.

View Article and Find Full Text PDF

Background: Persistence hyperglycemia results in the formation of advanced glycation end products (AGEs) by non-enzymatic glycation. AGEs and their receptor RAGE play an important role in generation of inflammatory molecules and oxidative stress. Metformin regulates insulin responsive gene and helps to achieve glycemic control however, no extensive study reported about its role against glycation induced oxidative stress and vascular inflammation.

View Article and Find Full Text PDF

Diabetic complications are associated with the glycation and formation of advanced glycation end products (AGEs) which leads to structural modifications of biomolecules further affecting cells. Carbonyl compounds such as methylglyoxal and glyceraldehyde-3-phosphate are highly reactive and form an elevated amount of AGEs as compared to glucose and fructose. The investigation of glycation modifications by different compounds may be important to assess the specific pattern of biomolecular and cellular modifications and compare their glycation potential.

View Article and Find Full Text PDF

The present work aims to determine the effect of pioglitazone on in-vitro albumin glycation and AGE-RAGE induced oxidative stress and inflammation. Bovine serum albumin was glycated by methylglyoxal in absence or presence of pioglitazone. Glycation markers (fructosamine, carbonyl groups, β-amyloid aggregation, thiol groups, bilirubin binding capacity and AOPP); protein conformational changes (native-PAGE and HPLC analysis) were determined.

View Article and Find Full Text PDF

Advanced glycation end products (AGEs) play a role in pathogenesis of diabetic nephropathy (DN). Myo-inositol oxygenase (MIOX) has been implicated in tubulointerstitial injury in the context of DN. We investigated the effect of AGEs on MIOX expression and delineated mechanisms that lead to tubulointerstitial injury.

View Article and Find Full Text PDF

Background Of Study: Enhanced protein glycation in diabetes causes irreversible cellular damage through membrane modifications. Erythrocytes are persistently exposed to plasma glycated proteins; however, little are known about its consequences on membrane. Aim of this study was to examine the relationship between plasma protein glycation with erythrocyte membrane modifications in type 2 diabetes patients with and without vascular complications.

View Article and Find Full Text PDF