Motile cilia have essential cellular functions in development, reproduction, and homeostasis. Genetic causes for motile ciliopathies have been identified, but the consequences on cellular functions beyond impaired motility remain unknown. Variants in and cause severe disease not explained by loss of motility.
View Article and Find Full Text PDFMulticiliated cells (MCC) are evolutionary conserved, highly specialized cell types that contain dozens to hundreds of motile cilia that they use to propel fluid directionally. To template these cilia, each MCC produces between 30 and 500 basal bodies via a process termed centriole amplification. Much progress has been made in recent years in understanding the pathways involved in MCC fate determination, differentiation, and ciliogenesis.
View Article and Find Full Text PDFMotile cilia are cellular beating machines that play a critical role in mucociliary clearance, cerebrospinal fluid movement, and fertility. In the airways, hundreds of motile cilia present on the surface of a multiciliated epithelia cell beat coordinately to protect the epithelium from bacteria, viruses, and harmful particulates. During multiciliated cell differentiation, motile cilia are templated from basal bodies, each extending a basal foot-an appendage linking motile cilia together to ensure coordinated beating.
View Article and Find Full Text PDFMulticiliated cells (MCC) contain hundreds of motile cilia used to propel fluid over their surface. To template these cilia, each MCC produces between 100-600 centrioles by a process termed centriole amplification. Yet, how MCC regulate the precise number of centrioles and cilia remains unknown.
View Article and Find Full Text PDFCentrioles are vital cellular structures that form centrosomes and cilia. The formation and function of cilia depends on a set of centriole's distal appendages. In this study, we use correlative super resolution and electron microscopy to precisely determine where distal appendage proteins localize in relation to the centriole microtubules and appendage electron densities.
View Article and Find Full Text PDFThe two centrioles of the centrosome in quiescent cells are inherently asymmetric structures that differ in age, morphology and function. How these asymmetric properties are established and maintained during quiescence remains unknown. Here, we show that a daughter centriole-associated ciliopathy protein, Cep120, plays a critical inhibitory role at daughter centrioles.
View Article and Find Full Text PDF