Publications by authors named "Rashmi Bankoti"

Foxp3 regulatory T cells (Treg) are essential modulators of immune responses, but the molecular mechanisms underlying their function are not fully understood. Here we show that the transcription factor Blimp-1 is a crucial regulator of the Foxp3RORγt Treg subset. The intrinsic expression of Blimp-1 in these cells is required to prevent production of Th17-associated cytokines.

View Article and Find Full Text PDF

The transcriptional regulator Blimp1 plays crucial roles in controlling terminal differentiation in several lineages. In T cells, Blimp1 is expressed in both effector (Teff) and regulatory (Treg) cells, and mice with T cell-specific deletion of Blimp1 (Blimp1CKO mice) spontaneously develop severe intestinal inflammation, indicating a crucial role for Blimp1 in T cell homeostasis regulation. Blimp1 has been shown to function as a direct activator of the Il10 gene and although its requirement for IL10 expression has been demonstrated in both Treg and Teff cells under inflammatory conditions, the intrinsic requirement of Blimp1 for homeostatic maintenance of these T cell subsets had not been investigated.

View Article and Find Full Text PDF

Direct intercellular transfer of cellular components is a recently described general mechanism of cell–cell communication. It is a more non-specific mode of intercellular communication that is not actively controlled by the participating cells. Though membrane bound proteins and small non-protein cytosolic components have been shown to be transferred between cells, the possibility of transfer of cytosolic proteins has not been clearly established, and its mechanism remains unexplained.

View Article and Find Full Text PDF

The transcription factor B lymphocyte-induced maturation protein-1 (Blimp-1) plays important roles in embryonic development and immunity. Blimp-1 is required for the differentiation of plasma cells, and mice with T cell-specific deletion of Blimp-1 (Blimp-1CKO mice) develop a fatal inflammatory response in the colon. Previous work demonstrated that lack of Blimp-1 in CD4(+) and CD8(+) T cells leads to intrinsic functional defects, but little is known about the functional role of Blimp-1 in regulating differentiation of Th cells in vivo and their contribution to the chronic intestinal inflammation observed in the Blimp1CKO mice.

View Article and Find Full Text PDF

Marginal zone B cells (MZB) participate in the early immune response to several pathogens. In this study, we show that in μMT mice infected with Leishmania donovani, CD8 T cells displayed a greater cytotoxic potential and generated more effector memory cells compared with infected wild type mice. The frequency of parasite-specific, IFN-γ(+) CD4 T cells was also increased in μMT mice.

View Article and Find Full Text PDF

Immunity to pathogens requires generation of effective innate and adaptive immune responses. Leishmania donovani evades these host defense mechanisms to survive and persist in the host. A better understanding and identification of mechanisms that L.

View Article and Find Full Text PDF

The transcription factor Interferon Regulatory Factor 5 (IRF-5) has been shown to be involved in the induction of proinflammatory cytokines in response to viral infections and TLR activation and to play an essential role in the innate inflammatory response. In this study, we used the experimental model of visceral leishmaniasis to investigate the role of IRF-5 in the generation of Th1 responses and in the formation of Th1-type liver granulomas in Leishmania donovani infected mice. We show that TLR7-mediated activation of IRF-5 is essential for the development of Th1 responses to L.

View Article and Find Full Text PDF

The generation of Th17 cells has to be tightly controlled during an immune response. In this study, we report an increase in a CD44(high)CD62L(-) Th17 subset in mice deficient for the protein tyrosine kinase Tec. CD44(high)CD62L(-) Tec(-/-) CD4(+) T cells produced enhanced IL-17 upon activation, showed increased expression levels of IL-23R and RORγt, and IL-23-mediated expansion of Tec(-/-) CD4(+) T cells led to an increased production of IL-17.

View Article and Find Full Text PDF

The protozoan parasite Leishmania donovani, a causative agent of visceral leishmaniasis, has evolved several strategies to interfere with the immune system and establish persistent infections that are potentially lethal. In this article, we discuss two mechanisms of immune evasion adopted by the parasite: the induction of immune suppressive IL-10 responses and the generation of poor and functionally impaired CD8(+) T-cell responses.

View Article and Find Full Text PDF