Publications by authors named "Rashieda Hatcher"

Article Synopsis
  • * The study demonstrates that USP37 can inhibit medulloblastoma growth in mouse models, highlighting its potential as a tumor suppressor in this type of cancer.
  • * The repression of USP37 is linked to the silencing transcription factor REST, which works with the histone methyltransferase G9a to modify histone proteins, suggesting that targeting G9a could reactivate USP37 and serve as a therapeutic strategy for certain medulloblastomas.
View Article and Find Full Text PDF

Pituitary tumor transforming gene 1 (Pttg1) encodes the mammalian securin, which is an inhibitor of separase (a protease required for the separation of sister chromatids in mitosis and meiosis). PTTG1 is overexpressed in a number of human cancers and has been suggested to be an oncogene. However, we found that, in Pttg1-mutant females, the mammary epithelial cells showed increased proliferation and precocious branching morphogenesis.

View Article and Find Full Text PDF

Activity of separase, a cysteine protease that cleaves sister chromatid cohesin at the onset of anaphase, is tightly regulated to ensure faithful chromosome segregation and genome stability. Two mechanisms negatively regulate separase: inhibition by securin and phosphorylation on serine 1121. To gauge the physiological significance of the inhibitory phosphorylation, we created a mouse strain in which Ser1121 was mutated to Ala (S1121A).

View Article and Find Full Text PDF

The spindle assembly checkpoint monitors the integrity of the spindle microtubules, which attach to sister chromatids at kinetochores and play a vital role in preserving genome stability by preventing missegregation. A key target of the spindle assembly checkpoint is securin, the separase inhibitor. In budding yeast, loss of securin results in precocious sister chromatid separation when the microtubule spindle is disrupted.

View Article and Find Full Text PDF

Mitotic catastrophe is the response of mammalian cells to mitotic DNA damage. It produces tetraploid cells with a range of different nuclear morphologies from binucleated to multimicronucleated. In response to DNA damage, checkpoints are activated to delay cell cycle progression and to coordinate repair.

View Article and Find Full Text PDF

Skeletal myogenesis is a well-studied differentiation process. However, despite the identification and functional characterization of the myogenic basic HLH transcription factors, molecular details are still lacking. With the advent of microarray technology, it has become possible to look at changes in gene expression profiles in a biological process on an unprecedented scale.

View Article and Find Full Text PDF