A monochromatic red emitting nonacoordinate organoeuropium complex with the formula [Eu(hfaa)(Ph-TerPyr)] (Eu-1) incorporating hexafluoroacetylacetone (hfaa) primary ligands and a tridentate 4'-phenyl-2,2':6',2''-terpyridine (Ph-TerPyr) ancillary ligand has been synthesized. The complex was characterized by analytical and spectroscopic methods, and its structure was established by single crystal X-ray diffraction (SC-XRD) analysis at low temperature, which explicitly confirms that the coordination sphere is composed of a EuON core. Under the UV excitation, Eu-1 displayed typical red emission in solution with a long-excited state lifetime ( = 1048.
View Article and Find Full Text PDFThird-generation organic light-emitting diodes (OLEDs) based on metal-free thermally activated delayed fluorescent (TADF) materials have sparked tremendous interest in the last decade due to their nearly 100% exciton utilization efficiency, which can address the low-efficiency issue of the first-generation fluorescent emitters and the high-cost issue of the second-generation organometallic phosphorescent emitters. Construction of efficient and stable TADF-OLEDs requires utilizing TADF materials with a narrow singlet-triplet energy gap (ΔE), high photoluminescence quantum yield (PLQY) and short TADF lifetime. A small ΔE is necessary for an efficient reverse intersystem crossing (RISC) process, which can be achieved through the effective spatial separation of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).
View Article and Find Full Text PDFReaction of two equivalents of [Ln(dbm)(HO)] (Ln = Sm/Eu/Gd) with one equivalent of 4,4'-bipyridine (4,4'-bpy) led to the formation of rare polynuclear complexes of the type [Ln(dbm)(4,4'-bpy)] (dbm is the anion of 1,3-diphenyl-1,3-propanedione) instead of symmetrically bridged dinuclear complexes. The structure of the complexes has been established by the single crystal X-ray diffraction (SC-XRD) method and shows that the coordination sphere is composed of a LnON core (octacoordinated). Shape analysis further revealed that the geometry around Ln(III) is distorted square anti-prismatic with SHAPE value 0.
View Article and Find Full Text PDFTwo new organo-europium complexes (OEuCs) [Eu(btfa)(Bathphen)] (OEuC-1) and [Eu(tta)(Bathphen)] (OEuC-2) where btfa and tta are the anions of 4,4,4-trifluoro-1-phenyl-1,3-butanedione and 2-thenoyltrifluoroacetone while Bathphen = Bathophenanthroline have been synthesized and characterized. Both complexes in the solid state exhibit strong red emissions with photoluminescence quantum yields (PLQYs) of 80% ± 10%. These complexes were tested as dopants in the emitting layer (EML) to fabricate red organic light emitting diodes (R-OLEDs).
View Article and Find Full Text PDFTwo novel nona-coordinated Eu(III) complexes [Eu(btfa) (Ph-TerPyr)] (Eu-1) and [Eu(NTA) (Ph-TerPyr)] (Eu-2) have been synthesized and characterized. The structure of the complexes was elucidated by density functional theory (DFT) methods. The experimental photophysical properties of the complexes were investigated and complemented with theoretical calculations.
View Article and Find Full Text PDFTwo new organo-europium complexes (OEuCs) [Eu(tfac)(TB-Im)] (Eu1) [Eu(hfac)(TB-Im)] (Eu2) incorporating fluorinated (hexafluoroacetylacetone; Hhfaa) or hemi-fluorinated (trifluoroacetylacetone; Htfac) β-diketones together with the large bite angle N^N ligand (2-(4-thiazolyl)benzimidazole; TB-Im) have been synthesized and characterized. The structure of the complexes has been established by single crystal X-ray diffraction (SC-XRD) analysis and shows that the coordination sphere is composed of a EuON core (octacoordinated). Continuous shape measures (CShMs) revealed that the geometry around Eu(III) is trigonal dodecahedral with approximate -symmetry.
View Article and Find Full Text PDFDomesticating solar energy by exploiting photovoltaic technology has become a quintessential strategy for future global energy production. Since 2015, non-fullerene organic solar cells (NF-OSC) have attracted a great deal of attention owing to the marvellous properties of non-fullerene acceptors (NFA) such as structural versability, broad absorption, suitable energy levels, tunable charge transport and morphology, leading to remarkable accomplishments in power conversion efficiency (PCE) from 1% to nearly 20%. One class of materials is provided by the fused ring aromatic indacenodithiophene (IDT) and its derivatives, which are emerging continuously as promising next-generation building blocks to construct high performance photovoltaic materials.
View Article and Find Full Text PDFCorrection for 'Utilization of a Pt(ii) di-yne chromophore incorporating a 2,2'-bipyridine-5,5'-diyl spacer as a chelate to synthesize a green and red emitting d-f-d heterotrinuclear complex' by Idris Juma Al-Busaidi et al., Dalton Trans., 2021, DOI: 10.
View Article and Find Full Text PDFA new heterotrinuclear (d-f-d) complex [Eu(btfa)1c] (btfa = 4,4,4-trifluoro-1-phenyl-1,3-butanedione and 1c = [(Ph)(EtP)Pt-C[triple bond, length as m-dash]C-R-C[triple bond, length as m-dash]C-Pt(EtP)(Ph)] (R = 2,2'-bipyridine-5,5'-diyl) has been synthesized by utilizing the N,N-donor sites of the organometallic chromophore. The complex was characterized by analytical and spectroscopic methods. Photophysical properties of the complex were analysed in detail using both steady-state and time-resolved emission and excitation spectroscopy.
View Article and Find Full Text PDFSquare planar platinum(ii) complexes have been known for 150 years and pincer complexes, supported by a tridentate chelating ligand such as terpyridyl, have been known for more than 70 years. The development of cyclometallated platinum(ii) pincer complexes, in which the tridentate ligand forms one or more platinum-carbon bonds, has been much more recent. Particularly, in terms of their solution and solid-state luminescence these cyclometallated complexes show substantial advantages over their terpyridyl analogues.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR) is a key target in anticancer research, whose aberrant function in malignancies has been linked to severe irregularities in critical cellular processes, including cell cycle progression, proliferation, differentiation, and survival. EGFR mutant variants, either transmembrane or translocated to the mitochondria and/or the nucleus, often exhibit resistance to EGFR inhibitors. The ability to noninvasively image and quantify EGFR provides novel approaches in the detection, monitoring, and treatment of EGFR-related malignancies.
View Article and Find Full Text PDFTwo new lanthanide complexes [Ln(hfaa)(Py-Im)] [hfaa = hexafluoroacetylacetone, Py-Im = 2-(2-pyridyl)benzimidazole and Ln = Eu(III) (1) and Tb(III) (2)] were synthesized and characterized. An X-ray crystal structure determination confirms that complex 1 is eight-coordinate with a distorted trigonal dodecahedral geometry. It shows typical vivid red Eu(III) emission in the solid state, in solution, and in a polymer matrix.
View Article and Find Full Text PDF