In clinical settings, cancer vaccines as monotherapies have displayed limited success compared to other cancer immunotherapeutic treatments. Nanoscale formulations have the ability to increase the efficacy of cancer vaccines by combatting the immunosuppressive nature of the tumor microenvironment. Here, we have synthesized a previously unexplored cationic polymeric nanoparticle formulation using polyamidoamine dendrimers and poly(d,l-lactic--glycolic acid) that demonstrate adjuvant properties in vivo.
View Article and Find Full Text PDFThe COVID-19 pandemic has caused tremendous damage to the world. In order to quickly and accurately diagnose the virus and contain the spread, there is a need for rapid, sensitive, accurate, and cost-effective SARS-CoV-2 biosensors. In this paper, we report on a novel biosensor based on angiotensin converting enzyme 2 (ACE-2)-conjugated vertically-oriented silicon nanowire (vSiNW) arrays that can detect the SARS-CoV-2 spike protein with high sensitivity and selectivity relative to negative controls.
View Article and Find Full Text PDFACS Appl Nano Mater
September 2020
Since the inception of silicon nanowires (SINWs)-based biosensors in 2001, SINWs employed in various detection schemes have routinely demonstrated label-free, real-time, sub femtomolar detection of both protein and nucleic acid analytes. This has allowed SiNW-based biosensors to integrate into the field of cancer detection and cancer monitoring and thus have the potential to be a paradigm shift in how cancer biomarkers are detected and monitored. Combining this with several promising fields such as liquid biopsies and targeted oncology, SiNW based biosensors represents an opportunity for cancer monitoring and treatment to be a more dynamic process.
View Article and Find Full Text PDFHydrogen sulfide (HS) has emerged as a gaseous mediator capable of exhibiting many beneficial properties including cytoprotection, anti-inflammation, and vasodilation. The study presented here provides characterization of a poly(lactic acid) polymer with a functionalized 4-hydroxythiobenzamide (PLA-4HTB) capable of extended HS release. The polymer was used to fabricate microparticles that can be potentially loaded with a drug allowing for co-release of the drug and HS.
View Article and Find Full Text PDFGeometric topographies are known to influence cellular differentiation toward specific phenotypes, but to date the range of features and type of substrates that can be easily fabricated to study these interactions is somewhat limited. In this study, an emerging technology, two-photon polymerization, is used to print topological patterns with varying feature-size and thereby study their effect on cellular differentiation. This technique offers rapid manufacturing of topographical surfaces with good feature resolution for shapes smaller than 3 µm.
View Article and Find Full Text PDF