Publications by authors named "Rashedul Ahsan"

Background: Recent evidence has demonstrated that ethanol intake can stimulate the expression and production of the feeding-stimulatory peptide, galanin (GAL), in the hypothalamic paraventricular nucleus (PVN), and that PVN injection of this peptide, in turn, can increase the consumption of ethanol. To test the hypothesis that other feeding-related systems are involved in ethanol intake, this study examined the effect of ethanol on the hypothalamic opioid peptides, enkephalin (ENK), and dynorphin (DYN).

Method: Adult, male Sprague-Dawley rats were trained to voluntarily drink increasing concentrations of ethanol, up to 9% v/v, on a 12-hour access schedule or were given a single injection of ethanol (10% v/v) versus saline vehicle.

View Article and Find Full Text PDF

The question of whether or not the locus coeruleus (LC) participates in the control of motor activity has been controversial due to difficulties in demonstrating permanent motor deficits after neurotoxic lesions of this nucleus or of the dorsal noradrenergic bundle (DNB). In the present experiments it was shown in rats that acute local blockade (with terazosin) or stimulation (with phenylephrine) of LC alpha(1)-adrenoceptors respectively blocked or stimulated exploratory behavior in a novel cage and the home cage. Moreover, previous lesion of the DNB by i.

View Article and Find Full Text PDF

Brain alpha1-adrenoceptors that participate in behavioral activation were mapped in the mouse brain by determining where microinjection of the alpha1-antagonist, terazosin, inhibited behavioral activity in a novel cage test. A total of 5 out of 23 tested regions were shown to be involved including the dorsal pons/locus coeruleus region (DP/LC), the dorsal raphe/periaqueductal gray area (DR/PAG), the vermis cerebellum (CER), the nucleus accumbens (ACC) and the medial preoptic area (MPOA). Injection in the 4th ventricle was also effective perhaps by acting on several of these regions simultaneously.

View Article and Find Full Text PDF

The role of brain epinephrine (EPI) in the regulation of motor activity and movement in mice was examined. Blockade of EPI synthesis with i.p.

View Article and Find Full Text PDF