Publications by authors named "Rashad Ramzan"

We present the design and practical implementation of a microstrip diplexer based on the wave discrimination property associated with the electromagnetically induced transparency (EIT)-like effect. The EIT is a quantum interference phenomenon which happens between two atomic transition pathways and allows wave propagation within a medium's absorption spectrum. Here, we exploit an analogous interference mechanism in a three-port microstrip structure to demonstrate a diplexer based on the EIT-like effect in the microwave regime.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

We report a novel guided-wave resonator that supports multiple bands of electromagnetically induced transparency (EIT). The platform for the spatial and spectral interference is obtained by a microstrip transmission line loaded with proximity-coupled open-circuited stubs. We show experimentally that with two microstrip open stubs, a complete destructive interference takes place leading to a single EIT band with near-unity transmission efficiency.

View Article and Find Full Text PDF

The traditional microwave resonance sensors are based on the measurement of the frequency shift and bandwidth of a resonator's amplitude spectrum. Here we propose a novel sensing scheme in which the material properties are estimated by determining the changes in the phase spectrum of an anomalous-phase resonator. In the proposed phase sensing, we exploit the unique double phase reversal which takes place on the edges of the anomalous dispersion region as a signature to detect the resonance.

View Article and Find Full Text PDF