Publications by authors named "Rasha M El-Nashar"

A novel modified sensor based on electropolymerization of hippuric acid (HA) using cyclic voltammetry within the potential window - 1 to 1.5 V for 10 cycles at a scan rate 100 mV s over multiwalled carbon nanotubes (MWCNTs) on battery graphite electrode (BGE). Poly (HA)/MWCNTs/BGE sensor exhibited two linearity ranges 3.

View Article and Find Full Text PDF

Acne vulgaris, a prevalent skin condition, arises from an imbalance in skin flora, fostering bacterial overgrowth. Addressing this issue, clindamycin molecularly imprinted polymeric nanoparticles (Clin-MIP) loaded onto polyurethane nanofiber scaffolds were developed for acne treatment. Clin-MIP was synthesized via precipitation polymerization using methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and azoisobutyronitrile (AIBN) as functional monomers, crosslinkers, and free-radical initiators, respectively.

View Article and Find Full Text PDF

An electroanalytical methodology was developed by direct differential pulse voltammetric (DPV) measurement of Levodopa (LD), Carbidopa (CD) and Entacapone (ENT) mixture using bare glassy carbon electrode (GCE) in Britton Robinson (BR) buffer (pH = 2.0). A multivariate calibration model was then applied to the exported preprocessed voltammetric data using partial least square (PLS) as a chemometric tool.

View Article and Find Full Text PDF

Red dyes as Allura Red (E129), Amaranth (E124), Ponceau 4R (E123), Erythrosine (E127) and Carmoisine (E122), are very popular food additives due to their stability, low cost, and minimal microbial contamination. Despite these advantages, their consumption may result in asthma, hyperactivity, carcinogenic effects, etc depending on the uptake and age. Therefore, the United States Food and Drug Administration (FDA) and European Food Safety Authority (EFSA) have managed the permissions of allowed daily intake (ADI) for consumption levels of these dyes to be 0.

View Article and Find Full Text PDF

Kasugamycin residues (KASU), a pest control antibiotic, was reported as an ecosystem threat owing to its over-application in plant protection to meet the growing global need for agronomic products. Therefore, we report herein the first electrochemical sensor for fast and sensitive analysis of KASU in vegetables based on the synergetic hybridization between conducting polyserine film (poly (SER)), and carbon nanomaterials including functionalized multiwalled carbon nanotubes (fMWCNTs) and reduced graphene oxide (rGO). The sensor was characterized morphologically using Scanning electron (SEM) and atomic force Microscopy (AFM), while cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for electrochemical characterization.

View Article and Find Full Text PDF

In recent years, due to the developments in the textile industry, water contaminated with synthetic dyes such as methylene blue (MB) has become an environmental threat based on the possible impacts in terms of chemical and biochemical demand, which leads to disturbance in aquatic plants photosynthesis, besides their possible toxicity and carcinogenicity for humans. In this work, an adsorbent hydrogel is prepared via free radical polymerization comprising acrylic acid (PAA) as a monomer and orange peel (OP) as a natural modifier rich in OH and COOH present in its cellulose and pectin content. The resulting hydrogels were optimized in terms of the content of OP and the number of cross-linkers and characterized morphologically using Scanning electron microscopy.

View Article and Find Full Text PDF

Loratadine (LORA), is a topical antihistamine utilized in the treatment of ocular symptoms of COVID-19. The study aimed to develop a Loratadine Nanostructured Lipid Carriers Ocugel (LORA-NLCs Ocugel), enhance its solubility, trans-corneal penetrability, and bioavailability. full-factorial design was established with 2 trials to investigate the impact of several variables upon NLCs properties.

View Article and Find Full Text PDF

Smoking is a life-threatening habit; that is why many nicotine-replacement therapies (NRTs), which include chewing gums, nicotine patches, lozenges, mouth sprays, inhalers and nasal sprays that are usually administered for 8-12 weeks, have been reported for smoking cessation. We report the fabrication of patches comprising nanomicelles-in-coaxial nanofibers (NFs) for the transdermal delivery of varenicline (VAR) tartrate, a partial agonist of the α4β2 receptor subtype, for smoking cessation. The cores of the fabricated coaxial NF structures are composed of polyethylene oxide, VAR-loaded Pluronic F127 nanomicelles (NPs) and free VAR, while the shell consists of a blend of cellulose acetate (CA) and polycaprolactone (PCL) in a ratio of 1 : 9 (w/w) that incorporates 50% (wt%) free VAR.

View Article and Find Full Text PDF

Early detection of pathogens is necessary for food quality monitoring, and increasing the survival rate of individuals. Conventional microbiological methods used to identify microorganisms, starting from bacterial culture and ending with advanced PCR gene identification, are time-consuming, laborious and expensive. Thus, in this study, a bacterial imprinted polymer (BIP)-based biosensor was designed and fabricated for rapid and selective detection of .

View Article and Find Full Text PDF

This work demonstrates a facile electropolymerization of a dl-methionine (dl-met) conducting polymeric film on a gold nanoparticle (AuNPs)-modified glassy carbon electrode (GCE). The resulting sensor was successfully applied for the sensitive detection of paroxetine·HCl (PRX), a selective serotonin (5-HT) reuptake inhibitor (SSRIs), in its pharmaceutical formulations. The sensor was characterized morphologically using scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM) and electrochemical techniques such as differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV).

View Article and Find Full Text PDF

The increase of the global population and shortage of renewable water resources urges the development of possible remedies to improve the quality and reusability of waste and contaminated water supplies. Different water pollutants, such as heavy metals, dyes, pesticides, endocrine disrupting compounds (EDCs), and pharmaceuticals, are produced through continuous technical and industrial developments that are emerging with the increasing population. Molecularly imprinted polymers (MIPs) represent a class of synthetic receptors that can be produced from different types of polymerization reactions between a target template and functional monomer(s), having functional groups specifically interacting with the template; such interactions can be tailored according to the purpose of designing the polymer and based on the nature of the target compounds.

View Article and Find Full Text PDF

Sofosbuvir is a direct-acting antiviral drug that inhibits hepatitis C virus (HCV) NS5B polymerase, which in turn affects the virus replication inside biological systems. The clinical importance of sofosbuvir is based not only on its effect on HCV but also on other lethal viruses such as Zika and severe acute respiratory syndrome coronavirus disease 2019 (SARS-COVID-19). Accordingly, there is a continuous shedding of light on the development and validation of accurate and fast analytical methods for the determination of sofosbuvir in different environments.

View Article and Find Full Text PDF

Foot-and-mouth disease virus serotype South-Africa territories-2 (FMDV-SAT-2) is the most fastidious known type in Aphthovirus which is subsequently reflected in the diagnosis regime. Rapid and early diagnostic actions are usually taken in response to the FMDV outbreak to prevent the dramatic spread of the disease. Virus imprinted sensor (VIP sensor) is gathering huge attention for the selective detection of pathogens.

View Article and Find Full Text PDF

Levofloxacin (LF) is a medically important antibiotic drug that is used to treat a variety of bacterial infections. In this study, three highly sensitive and selective carbon paste electrodes (CPEs) were fabricated for potentiometric determination of the LF drug: (i) CPEs filled with carbon paste (referred to as CPE); (ii) CPE coated (drop-casted) with ion-selective PVC membrane (referred to as C-CPE); (iii) CPE filled with carbon paste modified with a plasticizer (PVC/cyclohexanone) (referenced as P-CPE). The CPE was formulated from graphite (Gr, 44.

View Article and Find Full Text PDF

Ivabradine hydrochloride (IVR) is a medically important drug because of its ability to lower the heart rate. Techniques reported for IVR determination were expensive, laborious, besides being of poor selectivity. In this study, iron oxide @ carbon nanotube (FeO@MWCNTs) nanocomposite and molecularly imprinted polymer (MIP) were synthesized and used in the fabrication of carbon paste electrodes (CPEs) for the potentiometric detection of IVR in biological and pharmaceutical samples.

View Article and Find Full Text PDF

Ivabradine hydrochloride (IVB) has shown high medical importance as it is a medication for lowering the heart rate for the symptomatic chronic heart failure and symptomatic management of stable angina pectoralis. The high dose of IVB may cause severe and prolonged bradycardia, uncontrolled blood pressure, headache, and blurred vision. In this study, a highly sensitive carbon-paste electrode (CPEs) was constructed for the potentiometric determination of IVB in pharmaceutical formulations.

View Article and Find Full Text PDF

The present study describes the fabrication of molecularly imprinted (MI) magnetic beaded fibers using electrospinning. Rosmarinic acid was selected as exemplary yet relevant template during molecular imprinting. A "design of experiments" methodology was used for optimizing the electrospinning process.

View Article and Find Full Text PDF

Foot and mouth disease virus (FMDV), is a highly contagious virus due to its ease of transmission. FMDV has seven genetically distinguished serotypes with many subtypes within each serotype. The traditional diagnostic methods of FMDV have demonstrated many drawbacks related to sensitivity, specificity, and cross-reactivity.

View Article and Find Full Text PDF

Preparation of novel salicylate-selective optical sensors (bulk optodes) was performed and applied successfully for salicylate determination in pharmaceutical formulations, Aspirin® and Aspocid®. t-butyl calix[4]arene ionophore was incorporated in a plasticized poly (vinyl-chloride) membrane containing the chromoionophore ETH5294 (O) or ETH7075 (O). The optical response to salicylate was due to size-selective extraction of salicylate from the aqueous solution to the optode bulk through formation of hydrogen bond accompanied by chromoionophore protonation, that resulted in the optical response at 680 or 540 nm for O or O, respectively.

View Article and Find Full Text PDF

A molecularly imprinted polymer was synthesized for the purpose of sinapic acid isolation from Egyptian nutraceutical Botrytis italica, L. (broccoli) due to its prominent medicinal and wide pharmacological activities. A computational study was first developed to determine the optimal template to functional monomer molar ratio.

View Article and Find Full Text PDF

Computational modeling was applied to study the intermolecular interactions in the pre-polymerization mixture and find a suitable functional monomer to use in the design of a new molecularly imprinted polymer (MIP) for mosapride citrate which is considerably a large molecule (as the citrate ion is also included in calculations as it has centers that can take part in interaction with monomer via hydrogen bonding). Based on these calculations, methacyrlic acid (MAA) was selected as a suitable functional monomer. Mosapride citrate selective MIP and a non-imprinted polymer (NIP) were synthesized and characterized using FTIR, TGA and SEM and then incorporated in carbon paste electrodes (CPEs).

View Article and Find Full Text PDF

Molecularly imprinted polymer (MIP) was synthesized and applied for the extraction of chicoric acid from Chicory herb (Chicorium intybus L.). A computational study was developed to find a suitable template to functional monomer molar ratio for MIP preparations.

View Article and Find Full Text PDF

A molecularly imprinted polymer (MIP) was synthesized and applied as additive within a carbon paste electrode for the cyclic voltammetric determination of famciclovir (FCV). Complementary computational studies were performed to study the intermolecular interactions in the pre-polymerization mixture. Derived from the computational studies, four MIP ratios were synthesized and their performance was evaluated using equilibrium rebinding assays.

View Article and Find Full Text PDF

The present work aimed to investigate the predictability of the chromatographic behavior for the separation of underivatized amino acids on ristocetin A, known as Chirobiotic R, using a DryLab high-performance liquid chromatography (HPLC) method development software, which is typically used to predict the effect of changing various chromatographic parameters on resolution in the reversed phase mode. After implementing the basic runs, and judging the predictability via the computed resolution map, it can be deduced that the chiral recognition mechanisms tend towards a hydrophilic interaction chromatography rather than the reversed phase mode, which limits the ability of DryLab software to predict separations on Chirobiotic R.

View Article and Find Full Text PDF

Pharmaceutical companies worldwide tend to apply chiral chromatographic separation techniques in their mass production strategy rather than asymmetric synthesis. The present work aims to investigate the predictability of chromatographic behavior of enantiomers using DryLab HPLC method development software, which is typically used to predict the effect of changing various chromatographic parameters on resolution in the reversed phase mode. Three different types of chiral stationary phases were tested for predictability: macrocyclic antibiotics-based columns (Chirobiotic V and T), polysaccharide-based chiral column (Chiralpak AD-RH), and protein-based chiral column (Ultron ES-OVM).

View Article and Find Full Text PDF