APE1 is a multifaceted protein that orchestrates multiple activities in the cell, one of which is the preservation of genomic integrity; a vital process that takes place in the context of the base excision repair (BER) pathway. Studies have implicated APE1 in rendering cancerous cells less vulnerable to the effects of DNA-damaging agents that are commonly used for the treatment of cancer. Furthermore, suppression of APE1 expression in cancer cell lines is accompanied by the potentiation of the activity of cytotoxic agents.
View Article and Find Full Text PDFWe report here the discovery of a potent series of HIV-1 integrase (IN) inhibitors based on the ferrocenyl chalcone difluoridoborate structure. Ten new compounds have been synthesized and were generally found to have similar inhibitory activities against the IN 3' processing and strand transfer (ST) processes. IC(50) values were found to be in the low micromolar range, and significantly lower than those found for the non-coordinated ferrocenyl chalcones and other ferrocene molecules.
View Article and Find Full Text PDFHIV-1 integrase (IN) is a validated therapeutic target for antiviral drug design. However, the emergence of viral strains resistant to clinically studied IN inhibitors demands the discovery of novel inhibitors that are structurally as well mechanistically different. Herein, we describe the design and discovery of novel IN inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75, which is essential for the HIV-1 integration as an IN cofactor.
View Article and Find Full Text PDFThe diketo acid (DKA) class of HIV-1 integrase (IN) inhibitors is thought to function by chelating divalent metal ions on the enzyme catalytic site. However, differences in mutations conferring resistance to various DKA inhibitors suggest that multiple binding orientations may exist. In order to facilitate identification of DKA binding sites, a series of photoactivable analogues of two potent DKAs was prepared as novel photoaffinity probes.
View Article and Find Full Text PDFBackground: HIV-1 integrase (IN) represents a therapeutically advantageous viral target to treat HIV/AIDS in the clinic. Over a decade of progress in the field has resulted in IN inhibitor chemical classes that display specificity for strand transfer catalysis of the enzyme, thus blocking viral DNA integration into host cell nuclear DNA, an essential step for viral infectivity.
Objective: In this manuscript we provide an update on recent HIV-1 IN inhibitors that have been clinically evaluated, which include MK-0518, MK-2048, GS-9137, GS-9160, GS-9224, GSK-364735, and BMS-707035.