The significant improvement of quality of life achieved over the last decades has stimulated the development of new approaches in medicine to take into account the personal needs of each patient. Precision medicine, providing healthcare customization, opens new horizons in the diagnosis, treatment and prevention of numerous diseases. As a consequence, there is a growing demand for novel analytical devices and methods capable of addressing the challenges of precision medicine.
View Article and Find Full Text PDFThe melt of H₃BO₃ was used to reach a controllable reduced graphene oxide (rGO) synthesis protocol using a graphene oxide (GO) precursor. Thermogravimetric analysis and differential scanning calorimetry (TG/DSC) investigation and scanning electron microscopy (SEM) images have shown that different from GO powder, reduction of GO in the melt of H₃BO₃ leads to the formation of less disordered structure of basal graphene planes. Threefold coordinated boron atom acts as a scavenger of oxygen atoms during the process of GO reduction.
View Article and Find Full Text PDFA new type of modified electrode sensor for ascorbic acid has been prepared by deposition of multi-walled carbon nanotubes (MWCNT) and poly(Nile blue A) on the surface of glassy carbon electrodes. Nile blue A was electropolymerised either beneath (directly on glassy carbon) or onto the MWCNT layer by potential cycling in phosphate buffer solution at pH 6.0.
View Article and Find Full Text PDFThis article reports on a novel microsensor for amperometric measurement of ascorbic acid (AA) under acidic conditions (pH 2) based on a carbon fiber microelectrode (CFME) modified with nickel oxide and ruthenium hexacyanoferrate (NiO-RuHCF). This sensing layer was deposited electrochemically in a two-step procedure involving an initial galvanostatic NiO deposition followed by a potentiodynamic RuHCF deposition from solutions containing the precursor salts. Several important parameters were examined to characterize and optimize the NiO-RuHCF sensing layer with respect to its current response to AA by using cyclic voltammetry, and scanning electron microscopy-energy dispersive X-ray spectroscopy methods.
View Article and Find Full Text PDFA rapid electrochemical procedure for the determination of dipyrone was successfully developed at a carbon nanotube modified graphite-epoxy resin composite (GrEC) electrode. The composite electrode was used as support on which multi-walled carbon nanotubes (MWCNT) were immobilised by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide together with N-hydroxysuccinimide (EDC-NHS) in a chitosan (Chit) matrix. The electrochemical behaviour of dipyrone at this electrode in different buffer electrolytes with pH values between 5.
View Article and Find Full Text PDFThe effectiveness of immobilization of functionalized carbon nanotubes into chitosan using different cross-linking agents has been evaluated. The cross-linkers used were glyoxal (GO), glutaraldehyde (GA), epichlorohydrin (ECH), and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide together with N-hydroxysuccinimide (EDC-NHS), and the nanotubes were retained on graphite epoxy resin composite electrodes. The nanotube modified electrodes have been characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).
View Article and Find Full Text PDFFour different silica sol-gel films: methyltrimethoxysilane (MTMOS), tetraethoxysilane (TEOS), 3-aminopropyltriethoxysilane (APTOS) and 3-glycidoxypropyl-trimethoxysilane (GOPMOS) assembled onto highly oriented pyrolytic graphite (HOPG) were characterized using atomic force microscopy (AFM), due to their use in the development of glucose biosensors. The chemical structure of the oxysilane precursor and the composition of the sol-gel mixture both influenced the roughness, the size and the distribution of pores in the sol-gel films, which is relevant for enzyme encapsulation. The GOPMOS sol-gel film fulfils all the morphological characteristics required for good encapsulation of the enzyme, due to a smooth topography with very dense and uniform distribution of only small, 50 nm diameter, pores at the surface.
View Article and Find Full Text PDFProtective polymer coatings have been used to enhance the retention of enzymes in sol-gel films as immobilisation phases in electrochemical biosensors. Carbon film electrodes were electrochemically modified with poly(neutral red) (PNR). These electrodes were coated with oxysilane sol-gels incorporating glucose oxidase and an outer coating of carboxylated PVC (CPVC) or polyurethane (PU), with and without Aliquat-336 or isopropyl myristate (IPM) plasticizer, was applied.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2006
An amperometric biosensor has been developed for measurement of Umami, or the taste based on the amount of L-glutamate, in tomato foods. The biosensor is based on an enzyme-mediator system in which L-glutamate oxidase is used for biochemical oxidation of L-glutamate and a tetrafulvalene-tetracyanoquinodimethane (TTF-TCNQ) paste, prepared from the mixture of TTF-TCNQ salt, graphite powder, and silicone oil, serves as the mediator. The limit of detection, calculated by use of a four-parameter logistic model, was 0.
View Article and Find Full Text PDFA new, improved sensor for the electrocatalytic determination of ascorbate has been developed that has both a low applied operating potential and a low detection limit. The sensor was constructed by depositing copper hexacyanoferrate film either electrochemically or chemically onto carbon film electrode, and it was then characterised by cyclic voltammetry and electrochemical impedance spectroscopy. Chemically deposited films were shown to be the best for ascorbate determination and were used as an amperometric sensor at +0.
View Article and Find Full Text PDFCarbon paste electrodes bulk-modified with Bi(2)O(3)were used for the determination of Cd(II) and Pb(II). The best composition was 1% (wt%) Bi(2)O(3) in the paste. The measurements were made by differential pulse voltammetry in the potential range from -1.
View Article and Find Full Text PDF