Publications by authors named "Rares Ionut Stiufiuc"

In addition to the course of over 20 years of cucurbit-7-uril (CB[7]) in the pharmaceutical industry, the present study brings together the most recent observations from the perspective of ultrasensitive Raman spectroscopy and Density Functional Theory (DFT) related to the interaction of this molecule with atenolol (Ate) enantiomers during the formation of these host-guest complexes. Quantum chemistry calculations based on DFT were first used to understand the interaction geometry between CB[7] and Ate. These results were further confirmed by ultrasensitive vibrational spectroscopy.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is the sixth most common cancer in men and is often asymptomatic, leading to incidental detection in advanced disease stages that are associated with aggressive histology and poorer outcomes. Various cancer biomarkers are found in urine samples from patients with RCC. In this study, we propose to investigate the use of Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) on dried urine samples for distinguishing RCC.

View Article and Find Full Text PDF

Investigating the interaction between liposomes and proteins is of paramount importance in the development of liposomal formulations with real potential for bench-to-bedside transfer. Upon entering the body, proteins are immediately adsorbed on the liposomal surface, changing the nanovehicles' biological identity, which has a significant impact on their biodistribution and pharmacokinetics and ultimately on their therapeutic effect. Albumin is the most abundant plasma protein and thus usually adsorbs immediately on the liposomal surface.

View Article and Find Full Text PDF

The advent of Surface-Enhanced Raman Scattering (SERS) has enabled the exploration and detection of small molecules, particularly in biological fluids such as serum, blood plasma, urine, saliva, and tears. SERS has been proposed as a simple diagnostic technique for various diseases, including cancer. Renal cell carcinoma (RCC) ranks as the sixth most commonly diagnosed cancer in men and is often asymptomatic, with detection occurring incidentally.

View Article and Find Full Text PDF

This study delves into the intricate interaction between DNA and nanosystems, exploring its potential implications for biomedical applications. The focus lies in understanding the adsorption geometry of DNA when in proximity to plasmonic nanoparticles, utilizing ultrasensitive vibrational spectroscopy techniques. Employing a combined Raman-SERS analysis, we conducted an in-depth examination to clarify the molecular geometry of interactions between DNA and silver nanoparticles.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) represents the sixth most frequently diagnosed cancer in men and is asymptomatic, being detected mostly incidentally. The apparition of symptoms correlates with advanced disease, aggressive histology, and poor outcomes. The development of the Surface-Enhanced Raman Scattering (SERS) technique opened the way for investigating and detecting small molecules, especially in biological liquids such as serum or blood plasma, urine, saliva, and tears, and was proposed as a simple technique for the diagnosis of various diseases, including cancer.

View Article and Find Full Text PDF

Cancer still represents one of the biggest challenges in current medical practice. Among different types of cancer, oral cancer has a huge impact on patients due to its great visibility, which is more likely to create social stigma and increased anxiety. New early diagnose methods are still needed to improve treatment efficiency and patients' life quality.

View Article and Find Full Text PDF

Raman spectroscopy recently proved a tremendous capacity to identify disease-specific markers in various (bio)samples being a non-invasive, rapid, and reliable method for cancer detection. In this study, we first aimed to record vibrational spectra of salivary exosomes isolated from oral and oropharyngeal squamous cell carcinoma patients and healthy controls using surface enhancement Raman spectroscopy (SERS). Then, we assessed this method's capacity to discriminate between malignant and non-malignant samples by means of principal component-linear discriminant analysis (PC-LDA) and we used area under the receiver operating characteristics with illustration as the area under the curve to measure the power of salivary exosomes SERS spectra analysis to identify cancer presence.

View Article and Find Full Text PDF

DNA methylation is a crucial epigenetic hallmark of cancer development but the experimental methods able to prove nanoscale modifications are very scarce. Over time, Raman and its counterpart, surface-enhanced Raman scattering (SERS), became one of the most promising techniques capable to investigate nanoscale modifications of DNA bases. In our study, we employed Raman/SERS to highlight the differences between normal and leukemia DNA samples and to evaluate the effects of a 5-azacytidine treatment on leukemia cells.

View Article and Find Full Text PDF

Sorafenib is a multikinase inhibitor that has received increasing attention due to its high efficacy in hepatocellular carcinoma treatment. However, its poor pharmacokinetic properties (limited water solubility, rapid elimination, and metabolism) still represent major bottlenecks that need to be overcome in order to improve Sorafenib's clinical application. In this paper, we propose a nanotechnology-based hybrid formulation that has the potential to overcome these challenges: sorafenib-loaded nanoliposomes.

View Article and Find Full Text PDF

We report a very simple, rapid and reproducible method for the fabrication of anisotropic silver nanostars (AgNS) that can be successfully used as highly efficient SERS substrates for different bioanalytes, even in the case of a near-infra-red (NIR) excitation laser. The nanostars have been synthesized using the chemical reduction of Ag ions by trisodium citrate. This is the first research reporting the synthesis of AgNS using only trisodium citrate as a reducing and stabilizing agent.

View Article and Find Full Text PDF

It is possible to obtain diagnostically relevant data on the changes in biochemical elements brought on by cancer via the use of multivariate analysis of vibrational spectra recorded on biological fluids. Prostate cancer and control groups included in this research generated almost similar SERS spectra, which means that the values of peak intensities present in SERS spectra can only give unspecific and limited information for distinguishing between the two groups. Our diagnostic algorithm for prostate cancer (PCa) differentiation was built using principal component analysis and linear discriminant analysis (PCA-LDA) analysis of spectral data, which has been widely used in spectral data management in many studies and has shown promising results so far.

View Article and Find Full Text PDF

Extensive effort and research are currently channeled towards the implementation of SERS (Surface Enhanced Raman Spectroscopy) as a standard analytical tool as it has undisputedly demonstrated a great potential for trace detection of various analytes. Novel and improved substrates are continuously reported in this regard. It is generally believed that plasmonic nanostructures with plasmon resonances close to the excitation wavelength (on-resonance) generate stronger SERS enhancements, but this finding is still under debate.

View Article and Find Full Text PDF

Chiral separation is an important issue for the pharmaceutical industry. Over the years, several separation methods have been developed, mainly based on chromatography. Their working principle is based on the formation of transient diastereoisomers, but the very subtle nanoscale interactions responsible for separation are not always understood.

View Article and Find Full Text PDF

Background: Cytochrome c (Cyt c) is a key biomarker for early apoptosis, and many methods were designed to detect its release from mitochondria. For a proper evaluation of these programed cell death mechanisms, fluorescent nanoparticles are excellent candidates due to their valuable optical properties. Among all classes of nanoparticles developed thus far, carbon-based quantum dots bring qualitative and efficient imaging strategies for biomedical applications as a consequence of their biocompatibility and low cytotoxicity.

View Article and Find Full Text PDF

Surface enhanced Raman spectroscopy (SERS) represents a promising technique in providing specific molecular information that could have a major impact in biomedical applications, such as early cancer detection. SERS requires the presence of a suitable plasmonic substrate that can generate enhanced and reproducible diagnostic relevant spectra. In this paper, we propose a new approach for the synthesis of such a substrate, by using concentrated silver nanoparticles purified using the Tangential Flow Filtration method.

View Article and Find Full Text PDF

Cone beam computed tomography can be used in pediatric population when a tridimensional analysis of dental and maxillofacial bone structures is required. Even though CBCT is considered a low dose radiological examination, ionizing radiation is a known human carcinogenic factor. Furthermore, biological effects are more important in young patients because of their higher radiosensitivity.

View Article and Find Full Text PDF

By carefully controlling the electrostatic interactions between cationic liposomes, which already incorporate magnetic nanoparticles in the bilayers, and anionic gold nanoparticles, a new class of versatile multifunctional nanohybrids (plasmonic magneto-liposomes) that could have a major impact in drug delivery and controlled release applications has been synthesized. The experimental results confirmed the successful synthesis of hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) and polyethylene glycol functionalized (PEGylated) gold nanoparticles (AuNPs). The SPIONs were incorporated in the liposomal lipidic bilayers, thus promoting the formation of cationic magnetoliposomes.

View Article and Find Full Text PDF

Biological effects of low-dose ionizing radiation (IR) have been unclear until now. Saliva, because of the ease of collection, could be valuable in studying low-dose IR effects by means of surface-enhanced Raman spectroscopy (SERS). The objective of our study was to compare the salivary SER spectra recorded before and after low-dose IR exposure in the case of pediatric patients (PP).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl46i69e00elu7ngeg4sihduijgm4nlsc): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once