Modern molecular genetics studies necessitate the manipulation of genes in their endogenous locus, but most of the current methodologies require an inefficient donor-dependent homologous recombination step to locally modify the genome. Here we describe a methodology to efficiently generate Drosophila knock-in alleles by capitalizing on the availability of numerous genomic MiMIC transposon insertions carrying recombinogenic attP sites. Our methodology entails the efficient PhiC31-mediated integration of a recombination cassette flanked by unique I-SceI and/or I-CreI restriction enzyme sites into an attP-site.
View Article and Find Full Text PDFAfter the discovery of kinase activating mutations in leucine-rich repeat kinase 2 (LRRK2) as associated with autosomal dominant forms of Parkinson's disease, inhibition of the kinase is being extensively explored as a disease modifying strategy. As signaling properties and substrate(s) of LRRK2 are poorly documented, autophosphorylation has been an important readout for the enzyme's activity. Western blotting using anti-phospho-S910 or S935 LRRK2 antibodies showed effectiveness in demonstrating inhibitory effects of compounds.
View Article and Find Full Text PDFLRRK2 is a kinase mutated in Parkinson's disease, but how the protein affects synaptic function remains enigmatic. We identified LRRK2 as a critical regulator of EndophilinA. Using genetic and biochemical studies involving Lrrk loss-of-function mutants and Parkinson-related LRRK2(G2019S) gain-of-kinase function, we show that LRRK2 affects synaptic endocytosis by phosphorylating EndoA at S75, a residue in the BAR domain.
View Article and Find Full Text PDF