Publications by authors named "Raquel Valderrama"

The non-enzymatic interaction of polyunsaturated fatty acids with nitric oxide (NO) and derived species results in the formation of nitrated fatty acids (NO-FAs). These signaling molecules can release NO, reversibly esterify with complex lipids, and modulate protein function through the post-translational modification called nitroalkylation. To date, NO-FAs act as signaling molecules during plant development in plant systems and are involved in defense responses against abiotic stress conditions.

View Article and Find Full Text PDF

Heat stress is one of the abiotic stresses that leads to oxidative stress. To protect themselves, yeast cells activate the antioxidant response, in which cytosolic peroxiredoxin Tsa1 plays an important role in hydrogen peroxide removal. Concomitantly, the activation of the heat shock response (HSR) is also triggered.

View Article and Find Full Text PDF

Nitro-fatty acids are generated from the interaction of unsaturated fatty acids and nitric oxide (NO)-derived molecules. The endogenous occurrence and modulation throughout plant development of nitro-linolenic acid (NO2-Ln) and nitro-oleic acid (NO2-OA) suggest a key role for these molecules in initial development stages. In addition, NO2-Ln content increases significantly in stress situations and induces the expression of genes mainly related to abiotic stress, such as genes encoding members of the heat shock response family and antioxidant enzymes.

View Article and Find Full Text PDF

Nitro-fatty acids (NO-FAs) are novel molecules resulting from the interaction of unsaturated fatty acids and nitric oxide (NO) or NO-related molecules. In plants, it has recently been described that NO-FAs trigger an antioxidant and a defence response against stressful situations. Among the properties of NO-FAs highlight the ability to release NO therefore modulating specific protein targets through post-translational modifications (NO-PTMs).

View Article and Find Full Text PDF

Low temperature (LT) negatively affects plant growth and development via the alteration of the metabolism of reactive oxygen and nitrogen species (ROS and RNS). Among RNS, tyrosine nitration, the addition of an NO group to a tyrosine residue, can modulate reduced nicotinamide-dinucleotide phosphate (NADPH)-generating systems and, therefore, can alter the levels of NADPH, a key cofactor in cellular redox homeostasis. NADPH also acts as an indispensable electron donor within a wide range of enzymatic reactions, biosynthetic pathways, and detoxification processes, which could affect plant viability.

View Article and Find Full Text PDF

Nitric oxide (NO) is an active redox molecule involved in the control of a wide range of functions integral to plant biology. For instance, NO is implicated in seed germination, floral development, senescence, stomatal closure, and plant responses to stress. NO usually mediates signaling events via interactions with different biomolecules, for example the modulation of protein functioning through post-translational modifications (NO-PTMs).

View Article and Find Full Text PDF

Nitrate fatty acids (NO₂-FAs) are considered reactive lipid species derived from the non-enzymatic oxidation of polyunsaturated fatty acids by nitric oxide (NO) and related species. Nitrate fatty acids are powerful biological electrophiles which can react with biological nucleophiles such as glutathione and certain protein⁻amino acid residues. The adduction of NO₂-FAs to protein targets generates a reversible post-translational modification called nitroalkylation.

View Article and Find Full Text PDF

Nitro-fatty acids (NO-FAs) are formed from the reaction between nitrogen dioxide (NO) and mono and polyunsaturated fatty acids. Knowledge concerning NO-FAs has significantly increased within a few years ago and the beneficial actions of these species uncovered in animal systems have led to consider them as molecules with therapeutic potential. Based on their nature and structure, NO-FAs have the ability to release nitric oxide (NO) in aqueous environments and the capacity to mediate post-translational modifications (PTM) by nitroalkylation.

View Article and Find Full Text PDF

In the last few years, the role of nitric oxide (NO) and NO-related molecules has attracted attention in the field of plant systems. In this sense, the ability of NO to mediate several posttranslational modifications (NO-PTM) in different biomolecules, such as protein tyrosine nitration or S-nitrosylation, has shown the involvement of these reactive nitrogen species in a wide range of functions in plant physiology such as the antioxidant response or the involvement in processes such as germination, growth, development, or senescence. However, growing interest has focused on the interaction of these NO-derived molecules with unsaturated fatty acids, yielding nitro-fatty acids (NO-FAs).

View Article and Find Full Text PDF

In higher plants, there is a growing interest in the study of protein tyrosine nitration (NOTyr) as well as the identification of in vivo nitrated proteins. Different methods have been developed for identifying nitrotyrosine in biological samples. However, these analyses are difficult because tyrosine nitration is a very low-abundance posttranslational protein modification (PTM) and the lack of efficient enrichment methods for detection.

View Article and Find Full Text PDF

Nitric oxide (NO) has emerged as an essential biological messenger in plant biology that usually transmits its bioactivity by post-translational modifications such as S-nitrosylation, the reversible addition of an NO group to a protein cysteine residue leading to S-nitrosothiols (SNOs). In recent years, SNOs have risen as key signalling molecules mainly involved in plant response to stress. Chief among SNOs is S-nitrosoglutathione (GSNO), generated by S-nitrosylation of the key antioxidant glutathione (GSH).

View Article and Find Full Text PDF

Recent studies in animal systems have shown that NO can interact with fatty acids to generate nitro-fatty acids (NO-FAs). They are the product of the reaction between reactive nitrogen species and unsaturated fatty acids, and are considered novel mediators of cell signaling based mainly on a proven anti-inflammatory response. Although these signaling mediators have been described widely in animal systems, NO-FAs have scarcely been studied in plants.

View Article and Find Full Text PDF

In recent years, the study of nitric oxide (NO) in plant systems has attracted the attention of many researchers. A growing number of investigations have shown the significance of NO as a signal molecule or as a molecule involved in the response against (a)biotic processes. NO can be responsible of the post-translational modifications (NO-PTM) of target proteins by mechanisms such as the nitration of tyrosine residues.

View Article and Find Full Text PDF

Nitro-fatty acids (NO2-FAs), which are the result of the interaction between reactive nitrogen species (RNS) and non-saturated fatty acids, constitute a new research area in plant systems, and their study has significantly increased. Very recently, the endogenous presence of nitro-linolenic acid (NO2-Ln) has been reported in the model plant Arabidopsis thaliana. In this regard, the signaling role of this molecule has been shown to be key in setting up a defense mechanism by inducing the chaperone network in plants.

View Article and Find Full Text PDF

S-nitrosothiols (SNOs) are a family of molecules produced by the reaction of nitric oxide (NO) with -SH thiol groups present in the cysteine residues of proteins and peptides caused by a posttranslational modification (PTM) known as S-nitrosylation (strictly speaking S-nitrosation) that can affect the cellular function of proteins. These molecules are a relatively more stable form of NO and consequently can act as a major intracellular NO reservoir and, in some cases, as a long-distance NO signal. Additionally, SNOs can be transferred between small peptides and protein thiol groups through S-transnitrosylation mechanisms.

View Article and Find Full Text PDF

In recent years, research on the involvement of nitric oxide (NO) in plant systems has remarkably grown. However, most of the interest in this molecule has been focused on its ability to mediate different post-translational modifications (NO-PTM) in biomolecules, mainly nitration and S-nitrosylation of proteins, and its involvement in physiological and stress situations. Nevertheless, very recently the nitration of other molecules such as fatty acids has commanded increasingly greater attention.

View Article and Find Full Text PDF

Nitric oxide (NO) is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs) such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS), such as H2O2, which is also a signal molecule.

View Article and Find Full Text PDF

Nitro-fatty acids (NO2-FAs) are the product of the reaction between reactive nitrogen species derived of nitric oxide (NO) and unsaturated fatty acids. In animal systems, NO2-FAs are considered novel signaling mediators of cell function based on a proven antiinflammatory response. Nevertheless, the interaction of NO with fatty acids in plant systems has scarcely been studied.

View Article and Find Full Text PDF

The ascorbate-glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO(-)) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed.

View Article and Find Full Text PDF

Peroxisomes are subcellular organelles characterized by a simple morphological structure but have a complex biochemical machinery involved in signaling processes through molecules such as hydrogen peroxide (H2O2) and nitric oxide (NO). Nicotinamide adenine dinucleotide phosphate (NADPH) is an essential component in cell redox homeostasis, and its regeneration is critical for reductive biosynthesis and detoxification pathways. Plants have several NADPH-generating dehydrogenases, with NADP-isocitrate dehydrogenase (NADP-ICDH) being one of these enzymes.

View Article and Find Full Text PDF

Linolenic acid (Ln) released from chloroplast membrane galactolipids is a precursor of the phytohormone jasmonic acid (JA). The involvement of this hormone in different plant biological processes, such as responses to biotic stress conditions, has been extensively studied. However, the role of Ln in the regulation of gene expression during abiotic stress situations mediated by cellular redox changes and/or by oxidative stress processes remains poorly understood.

View Article and Find Full Text PDF

Background And Aims: The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development.

View Article and Find Full Text PDF

Low temperature severely affects plant growth and development. To overcome this constraint, several plant species from regions having a cool season have evolved an adaptive response, called cold acclimation. We have studied this response in olive tree (Olea europaea L.

View Article and Find Full Text PDF

Extra virgin olive oil (EVOO) and olives, key sources of unsaturated fatty acids in the Mediterranean diet, provide health benefits to humans. Nitric oxide (•NO) and nitrite (NO2 (-))-dependent reactions of unsaturated fatty acids yield electrophilic nitroalkene derivatives (NO2-FA) that manifest salutary pleiotropic cell signaling responses in mammals. Herein, the endogenous presence of NO2-FA in both EVOO and fresh olives was demonstrated by mass spectrometry.

View Article and Find Full Text PDF