Publications by authors named "Raquel Torres-Guzman"

Abemaciclib is an oral, selective cyclin-dependent kinase 4 & 6 inhibitor (CDK4 & 6i), approved for hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer (ABC) as monotherapy for endocrine refractory disease, and with endocrine therapy (ET) for initial treatment and after progression on ET. Abemaciclib has also shown clinical activity in combination with ET in patients with high risk early BC (EBC). Here, we examined the preclinical attributes of abemaciclib and other CDK4 & 6i using biochemical and cell-based assays.

View Article and Find Full Text PDF

Abemaciclib is an ATP-competitive, reversible kinase inhibitor selective for CDK4 and CDK6 that has shown antitumor activity as a single agent in hormone receptor positive (HR+) metastatic breast cancer in clinical trials. Here, we examined the mechanistic effects of abemaciclib treatment using and breast cancer models. Treatment of estrogen receptor positive (ER+) breast cancer cells with abemaciclib alone led to a decrease in phosphorylation of Rb, arrest at G1, and a decrease in cell proliferation.

View Article and Find Full Text PDF

The pva gene from Streptomyces lavendulae ATCC 13664, encoding a novel penicillin V acylase (SlPVA), has been isolated and characterized. The gene encodes an inactive precursor protein containing a secretion signal peptide that is activated by two internal autoproteolytic cleavages that release a 25-amino-acid linker peptide and two large domains of 18.79 kDa (alpha-subunit) and 60.

View Article and Find Full Text PDF

Loss of normal cell cycle regulation is a hallmark of human cancer. Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle and have been actively pursued as promising therapeutic targets. Likewise, members of the CDK family are functionally related to transcriptional modulation, a molecular pathway suitable for therapeutic intervention.

View Article and Find Full Text PDF

The culture medium for Streptomyces lavendulae ATCC 13664 was optimized on a shake-flask scale by using a statistical factorial design for enhanced production of penicillin acylase. This extracellular enzyme recently has been reported to be a penicillin K acylase, presenting also high hydrolytic activity against penicillin V and other natural aliphatic penicillins such as penicillin K, penicillin F, and penicillin dihydroF. The factorial design indicated that the main factors that positively affect penicillin acylase production by S.

View Article and Find Full Text PDF

The kinetic parameters of several substrates of penicillin acylase from Streptomyces lavendulae have been determined. The enzyme hydrolyses phenoxymethyl penicillin (penicillin V) and other penicillins with aliphatic acyl-chains such as penicillin F, dihydroF, and K. The best substrate was penicillin K (octanoyl penicillin) with a k(cat)/K(m) of 165.

View Article and Find Full Text PDF