A Scanning Tunneling Microscope (STM) is one of the most important scanning probe tools available to study and manipulate matter at the nanoscale. In a STM, a tip is scanned on top of a surface with a separation of a few Å. Often, the tunneling current between the tip and the sample is maintained constant by modifying the distance between the tip apex and the surface through a feedback mechanism acting on a piezoelectric transducer.
View Article and Find Full Text PDFRev Sci Instrum
September 2021
We describe a scanning tunneling microscope (STM) that operates at magnetic fields up to 22 T and temperatures down to 80 mK. We discuss the design of the STM head, with an improved coarse approach, the vibration isolation system, and efforts to improve the energy resolution using compact filters for multiple lines. We measure the superconducting gap and Josephson effect in aluminum and show that we can resolve features in the density of states as small as 8 μeV.
View Article and Find Full Text PDF