Publications by authors named "Raquel Osorio"

Objectives: Tideglusib (Tx) is known for its osteogenic potential, yet its effects on the interplay between osteoblasts and M1 macrophages remain underexplored. This in vitro study aimed to isolate and evaluate both the individual and combined roles of M1 macrophages and osteoblasts in macrophage differentiation and osteoblast function, specifically focusing on how these interactions influence protein expression of osteogenesis and osteoclastogenesis in the presence or absence of Tx.

Methods: Osteoblast and macrophage cells were co-cultured in direct contact for 24 and 48 h, with or without the presence of Tx.

View Article and Find Full Text PDF

Objectives: The aim of this study was to determine the viscoelastic performance and energy dissipation of conditioned dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs).

Methods: Dentin conditioned surfaces were infiltrated with NPs and TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how polymeric nanoparticles containing tideglusib (TDg-NPs) affect the formation, crystallinity, and elasticity of the resin-dentin interfaces in teeth.
  • Results showed that TDg-NPs led to higher crystallinity and improved mechanical properties compared to undoped nanoparticles, with better aligned hydroxyapatite crystals.
  • Although the TDg-NPs initiated effective mineralization, thermal stress negatively impacted the functional mineralization and crystallinity of the treated dentin.
View Article and Find Full Text PDF

Objective: Drug-loaded non-resorbable polymeric nanoparticles (NPs) are proposed as an adjunctive treatment for pulp regenerative strategies. The present in vitro investigation aimed to evaluate the effectiveness of tideglusib-doped nanoparticles (TDg-NPs) in mitigating the adverse effects of bacterial lipopolysaccharide endotoxin (LPS) on the viability, morphology, migration, differentiation and mineralization potential of human dental pulp stem cells (hDPSCs).

Methods: Cell viability, proliferation, and differentiation were assessed using a MTT assay, cell migration evaluation, cell cytoskeleton staining analysis, Alizarin Red S staining and expression of the odontogenic related genes by a real-time quantitative polymerase chain reaction (RT-qPCR) were also performed.

View Article and Find Full Text PDF

Objective: To evaluate whether nanoparticles (NPs) functionalized with Tideglusib (TDg, NP-12), and deposited on titanium surfaces, would counteract the effect of bacterial lipopolysaccharide (LPS) on osteoblasts.

Methods: Experimental groups were: (a) Titanium discs (TiD), (b) TiD covered with undoped NPs (Un-NPs) and (c) TiD covered with TDg-doped NPs (TDg-NPs). Human primary osteoblasts were cultured onto these discs, in the presence or absence of bacterial LPS.

View Article and Find Full Text PDF

Objectives: This study targets to assess the remineralization capability of conditioned dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TDg) (TDg-NPs).

Methods: Dentin conditioned surfaces were infiltrated with NPs and TDg-NPs. Bonded interfaces were created, stored for 24 h and submitted to mechanical and thermal challenging.

View Article and Find Full Text PDF

Background: 'Periodontitis' refers to periodontal destruction of connective tissue attachment and bone, in response to microorganisms forming subgingival biofilms on the root surface, while 'apical periodontitis' refers to periapical inflammatory processes occurring in response to microorganisms within the root canal system. The treatment of both diseases is based on the elimination of the bacterial challenge, though its predictability depends on the ability of disrupting these biofilms, what may need adjunctive antibacterial strategies, such as the next-generation antibacterial strategies (NGAS). From all the newly developed NGAS, the use of polymeric nanotechnology may pose a potential effective approach.

View Article and Find Full Text PDF

To counteract the effect of zoledronate and decrease the risk of osteonecrosis of the jaw (BRONJ) development in patients undergoing guided bone regeneration surgery, the use of geranylgeraniol (GGOH) has been proposed. Collagen membranes may act as biomimetical drug carriers. The objective of this study was to determine the capacity of collagen-based membranes doped with GGOH to revert the negative impact of zoledronate on the growth and differentiation of human osteoblasts.

View Article and Find Full Text PDF

Objectives: Tideglusib has shown great performance in terms of dentin regenerative properties. This study aims to evaluate bonding ability, of demineralized dentin infiltrated with polymeric nanoparticles (NPs) doped with tideglusib (TG) (TG-NPs).

Methods: Dentin conditioned surfaces were infiltrated with NPs and TG-NPs.

View Article and Find Full Text PDF

Objective: The aim of this study was to determine the effect of titanium micro particles (TiP) previously functionalized with nanoparticles doped with dexamethasone (Dex) and doxycycline (Dox), on macrophage polarization and activity.

Methods: Macrophages RAW264.7 were cultured in the presence TiP loaded with dexamethasone -NPs (Dex)- and doxycycline -NPs (Dox)-, and as control, TiP with or without doped NPs.

View Article and Find Full Text PDF

Objective: To analyze the effect of Katana™ Cleaner (KC) in nanomechanical and triboscopic properties of etched dentin.

Methods: Dentin disks from human third molars were prepared. Two main groups of study were established in function of the etching conditioning, phosphoric acid (PA) and Clearfil SE Bond primer (CSEB).

View Article and Find Full Text PDF

In periodontitis, the bone remodeling process is disrupted by the prevalent involvement of bacteria-induced proinflammatory macrophage cells and their interaction with osteoblast cells residing within the infected bone tissue. The complex interaction between the cells needs to be deciphered to understand the dominant player in tipping the balance from osteogenesis to osteoclastogenesis. Yet, only a few studies have examined the crosstalk interaction between osteoblasts and macrophages using biomimetic three-dimensional (3D) tissue-like matrices.

View Article and Find Full Text PDF

Objectives: This work aimed to evaluate if doxycycline-doped polymeric nanoparticles possessed any anti-inflammatory effect and promote osteogenic/cementogenic differentiation of stem cells from human periodontal ligament (PDLSCs).

Methods: The polymeric nanoparticles (NPs) were produced by a polymerization/precipitation process and doped with doxycycline (Dox-NPs). PDLSCs were cultured in the presence or absence of the NPs under osteogenic medium or IL-1β treatment.

View Article and Find Full Text PDF

Objectives: To evaluate the effect of doxycycline and dexamethasone doped nanoparticles covering titanium surfaces, on osteoblasts proliferation and differentiation.

Methods: Doxycycline and dexamethasone doped polymeric nanoparticles were applied on titanium discs (Ti-DoxNPs and Ti-DexNPs). Undoped NPs and uncovered Ti discs were used as control.

View Article and Find Full Text PDF

Objectives: Bioactive materials have been used for functionalization of adhesives to promote dentin remineralization. This study aims to evaluate bonding ability and both mechanical and chemical behavior of demineralized dentin infiltrated with polymeric nanoparticles doped with dexamethasone (Dex-NPs).

Methods: Dentin conditioned surfaces were infiltrated with NPs, Dex-NPs or Dex-Zn-NPs.

View Article and Find Full Text PDF

Objective: The aim of the study was to evaluate the effect of doxycycline- and dexamethasone-doped collagen membranes on the proliferation and differentiation of osteoblasts.

Background: Collagen barrier membranes are frequently used to promote bone regeneration and to boost this biological activity their functionalization with antibacterial and immunomodulatory substances has been suggested.

Methods: The design included commercially available collagen membranes doped with doxycycline (Dox-Col-M) or dexamethasone (Dex-Col-M), as well as undoped membranes (Col-M) as controls, which were placed in contact with cultured MG63 osteoblast-like cells (ATCC).

View Article and Find Full Text PDF

Objective: To investigate the effect of novel polymeric nanoparticles (NPs) doped with dexamethasone (Dex) on viscoelasticity, crystallinity and ultra-nanostructure of the formed hydroxyapatite after NPs dentin infiltration.

Methods: Undoped-NPs, Dex-doped NPs (Dex-NPs) and zinc-doped-Dex-NPs (Zn-Dex-NPs) were tested at dentin, after 24 h and 21 d. A control group without NPs was included.

View Article and Find Full Text PDF

Non-resorbable polymeric nanoparticles (NPs) are proposed as an adjunctive treatment for bone regenerative strategies. The present in vitro investigation aimed to evaluate the effect of the different prototypes of bioactive NPs loaded with zinc (Zn-NPs), doxycycline (Dox-NPs) or dexamethasone (Dex-NPs) on the viability, morphology, migration, adhesion, osteoblastic differentiation, and mineralization potential of human bone marrow stem cells (hBMMSCs). Cell viability, proliferation, and differentiation were assessed using a resaruzin-based assay, cell cycle analysis, cell migration evaluation, cell cytoskeleton staining analysis, Alizarin Red S staining, and expression of the osteogenic-related genes by a real-time quantitative polymerase chain reaction (RT-qPCR).

View Article and Find Full Text PDF

Natural extracellular matrix (ECM) collagen membranes are frequently used for bone regeneration procedures. Some disadvantages, such as rapid degradation and questionable mechanical properties, limit their clinical use. These membranes have a heterologous origin and may proceed from different tissues.

View Article and Find Full Text PDF

Gingival recessions are a prevalent oral mucosa alteration. To solve this pathology, palatal mucosa or polymeric soft tissue substitutes are used when performing coronal advanced flap (CAF) or tunnel (TUN) surgical techniques. To evaluate which is the most successful approach, a literature review and meta-analysis were conducted.

View Article and Find Full Text PDF

Polymeric membranes are frequently used for bone regeneration in oral and periodontal surgery. Polymers provide adequate mechanical properties (i.e.

View Article and Find Full Text PDF

This is a narrative review of the literature assessing the potential effectiveness of doping dentin polymeric adhesives with zinc compounds in order to improve bonding efficacy, remineralization and protection against degradation. A literature search was conducted using electronic databases, such as PubMed, MEDLINE, DIMDI and Web of Science. Through our search, we found literature demonstrating that Zn-doped dentin adhesives promote protection and remineralization of the resin-dentin interfaces.

View Article and Find Full Text PDF

This investigation aimed to evaluate the antibacterial effect of polymeric nanoparticles (NPs), functionalized with calcium, zinc, or doxycycline, using a subgingival biofilm model of six bacterial species ( and ) on sandblasted, large grit, acid-etched titanium discs (TiDs). Undoped NPs (Un-NPs) or doped NPs with calcium (Ca-NPs), zinc (Zn-NPs), or doxycycline (Dox-NPs) were applied onto the TiD surfaces. Uncovered TiDs were used as negative controls.

View Article and Find Full Text PDF

Tubule occlusion and remineralization are considered the two main goals of dentin hypersensitivity treatment. The objective is to assess the ability of dentifrices containing zinc-doped polymeric nanoparticles (NPs) to enduringly occlude the dentinal tubules, reinforcing dentin's mechanical properties. Fifteen dentin surfaces were acid-treated for dentinal tubule exposure and brushed with (1) distilled water, or with experimental pastes containing (2) 1% of zinc-doped NPs, (3) 5% of zinc-doped NPs, (4) 10% of zinc-doped NPs or (5) Sensodyne.

View Article and Find Full Text PDF

Objective: To investigate the effect of novel polymeric nanoparticles (NPs) doped with melatonin (ML) on nano-hardness, crystallinity and ultrastructure of the formed hydroxyapatite after endodontic treatment.

Methods: Undoped-NPs and ML-doped NPs (ML-NPs) were tested at radicular dentin, after 24 h and 6 m. A control group without NPs was included.

View Article and Find Full Text PDF