Publications by authors named "Raquel Montero"

Thymidine kinase (TK2) deficiency causes mitochondrial DNA depletion syndrome. We aimed to report the clinical, biochemical, genetic, histopathological, and ultrastructural features of a cohort of paediatric patients with TK2 deficiency. Mitochondrial DNA was isolated from muscle biopsies to assess depletions and deletions.

View Article and Find Full Text PDF

The biochemical measurement of the CoQ status in different tissues can be performed using HPLC with electrochemical detection (ED). Because the production of the electrochemical cells used with the Coulochem series detectors was discontinued, we aimed to standardize a new HPLC-ED method with new equipment. We report all technical aspects, troubleshooting and its performance in different biological samples, including plasma, skeletal muscle homogenates, urine and cultured skin fibroblasts.

View Article and Find Full Text PDF

Introduction And Objectives: Despite the growing interest and the potential benefits of idebenone as a repurposed drug for different orphan conditions, data regarding its monitoring are scarce. Our main goal was to report plasma idebenone values in a cohort of Friedreich's ataxia (FRDA) patients during a long-term follow-up. Taking advantage of this, we also assessed cardiological and neurological status together with idebenone values and genetic background.

View Article and Find Full Text PDF

Background: Mitochondrial diseases (MD) are genetic metabolic disorders that impair normal mitochondrial structure or function. The aim of this study was to investigate the status of circulating cell-free mitochondrial DNA (ccfmtDNA) in cerebrospinal fluid (CSF), together with other biomarkers (growth differentiation factor-15 [GDF-15], alanine, and lactate), in a cohort of 25 patients with a molecular diagnosis of MD.

Methods: Measurement of ccfmtDNA was performed by using droplet digital PCR.

View Article and Find Full Text PDF

Signal sequence receptor protein 4 (SSR4) is a subunit of the translocon-associated protein complex, which participates in the translocation of proteins across the endoplasmic reticulum membrane, enhancing the efficiency of N-linked glycosylation. Pathogenic variants in SSR4 cause a congenital disorder of glycosylation: SSR4-congenital disorders of glycosylation (CDG). We describe three SSR4-CDG boys and review the previously reported.

View Article and Find Full Text PDF

Coenzyme Q (CoQ) treatment monitoring is a matter of debate since CoQ distribution from plasma to blood cells and tissues is not fully understood. We aimed to analyze the CoQ levels in a wide set of human biological samples (plasma, blood mononuclear cells (BMCs), platelets, urinary cells, and skeletal muscle) from a group of 11 healthy male runners before and after CoQ supplementation. The CoQ content in the different samples was analyzed by HPLC coupled to electrochemical detection.

View Article and Find Full Text PDF

GDF-15 is a biomarker for mitochondrial diseases. We investigated the application of GDF-15 as biomarker of disease severity and response to deoxynucleoside treatment in patients with thymidine kinase 2 (TK2) deficiency and compared it to FGF-21. GDF-15 and FGF-21 were measured in serum from 24 patients with TK2 deficiency treated 1-49 months with oral deoxynucleosides.

View Article and Find Full Text PDF

Transport And Golgi Organization protein 2 (TANGO2) deficiency has recently been identified as a rare metabolic disorder with a distinct clinical and biochemical phenotype of recurrent metabolic crises, hypoglycemia, lactic acidosis, rhabdomyolysis, arrhythmias, and encephalopathy with cognitive decline. We report nine subjects from seven independent families, and we studied muscle histology, respiratory chain enzyme activities in skeletal muscle and proteomic signature of fibroblasts. All nine subjects carried autosomal recessive TANGO2 mutations.

View Article and Find Full Text PDF

Objective: Phosphomannomutase deficiency (PMM2 congenital disorder of glycosylation [PMM2-CDG]) causes cerebellar syndrome and strokelike episodes (SLEs). SLEs are also described in patients with gain-of-function mutations in the CaV2.1 channel, for which acetazolamide therapy is suggested.

View Article and Find Full Text PDF

Identifying diseases displaying chronic low plasma Coenzyme Q (CoQ) values may be important to prevent possible cardiovascular dysfunction. The aim of this study was to retrospectively evaluate plasma CoQ concentrations in a large cohort of pediatric and young adult patients. We evaluated plasma CoQ values in 597 individuals (age range 1 month to 43 years, average 11 years), studied during the period 2005-2016.

View Article and Find Full Text PDF

Mitochondrial diseases (MD) are a group of genetic and acquired disorders which present significant diagnostic challenges. Here we report the disease characteristics of a large cohort of pediatric MD patients ( = 95) with a definitive genetic diagnosis, giving special emphasis on clinical muscle involvement, biochemical and histopathological features. Of the whole cohort, 51 patients harbored mutations in nuclear DNA (nDNA) genes and 44 patients had mutations in mitochondrial DNA (mtDNA) genes.

View Article and Find Full Text PDF

Introduction: Phosphomannomutase-2 deficiency (PMM2-CDG) is associated with a recognisable facial pattern. There are no early severity predictors for this disorder and no phenotype-genotype correlation. We performed a detailed dysmorphology evaluation to describe facial gestalt and its changes over time, to train digital recognition facial analysis tools and to identify early severity predictors.

View Article and Find Full Text PDF

Mitochondrial diseases are a group of genetic disorders leading to the dysfunction of mitochondrial energy metabolism pathways. We aimed to assess the clinical phenotype and the biochemical cerebrospinal fluid (CSF) biogenic amine profiles of patients with different diagnoses of genetic mitochondrial diseases. We recruited 29 patients with genetically confirmed mitochondrial diseases harboring mutations in either nuclear or mitochondrial DNA (mtDNA) genes.

View Article and Find Full Text PDF

Coenzyme Q (CoQ) deficiency syndromes comprise a growing number of genetic disorders. While primary CoQ deficiency syndromes are rare diseases, secondary deficiencies have been related to both genetic and environmental conditions, which are the main causes of biochemical CoQ deficiency. The diagnosis is the essential first step for planning future treatment strategies, as the potential treatability of CoQ deficiency is the most critical issue for the patients.

View Article and Find Full Text PDF

Stroke-like episodes (SLE) occur in phosphomannomutase deficiency (PMM2-CDG), and may complicate the course of channelopathies related to Familial Hemiplegic Migraine (FHM) caused by mutations in (encoding Ca2.1 channel). The underlying pathomechanisms are unknown.

View Article and Find Full Text PDF

Coenzyme Q (CoQ ) plays a crucial role in mitochondria as an electron carrier within the mitochondrial respiratory chain (MRC) and is an essential antioxidant. Mutations in genes responsible for CoQ biosynthesis (COQ genes) cause primary CoQ deficiency, a rare and heterogeneous mitochondrial disorder with no clear genotype-phenotype association, mainly affecting tissues with high-energy demand including brain and skeletal muscle (SkM). Here, we report a four-year-old girl diagnosed with minor mental retardation and lethal rhabdomyolysis harboring a heterozygous mutation (c.

View Article and Find Full Text PDF

Objective: We aim to delineate the progression of cerebellar atrophy (the primary neuroimaging finding) in children with phosphomannomutase-deficiency (PMM2-CDG) by analyzing longitudinal MRI studies and performing cerebellar volumetric analysis and a 2D cerebellar measurement.

Methods: Statistical analysis was used to compare MRI measurements [midsagittal vermis relative diameter (MVRD) and volume] of children with PMM2-CDG and sex- and age-matched controls, and to determine the rate of progression of cerebellar atrophy at different ages.

Results: Fifty MRI studies of 33 PMM2-CDG patients were used for 2D evaluation, and 19 MRI studies were available for volumetric analysis.

View Article and Find Full Text PDF

Coenzyme Q (CoQ) is a lipid that is ubiquitously synthesized in tissues and has a key role in mitochondrial oxidative phosphorylation. Its biochemical determination provides insight into the CoQ status of tissues and may detect CoQ deficiency that can result from either an inherited primary deficiency of CoQ metabolism or may be secondary to different genetic and environmental conditions. Rapid identification of CoQ deficiency can also allow potentially beneficial treatment to be initiated as early as possible.

View Article and Find Full Text PDF

We evaluated the coenzyme Q₁₀ (CoQ) levels in patients who were diagnosed with mitochondrial oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders (n=72). Data from the 72 cases in this study revealed that 44.4% of patients showed low CoQ concentrations in either their skeletal muscle or skin fibroblasts.

View Article and Find Full Text PDF

The genetic causes of Leigh syndrome are heterogeneous, with a poor correlation between the phenotype and genotype. Here, we present a patient with an NDUFS4 mutation to expand the clinical and biochemical spectrum of the disease. A combined defect in the CoQ, PDH and RCC activities in our patient was due to an inappropriate assembly of the RCC complex I (CI), which was confirmed using Blue-Native polyacrylamide gel electrophoresis (BN-PAGE) analysis.

View Article and Find Full Text PDF

Background: We previously described increased levels of growth and differentiation factor 15 (GDF-15) in skeletal muscle and serum of patients with mitochondrial diseases. Here we evaluated GDF-15 as a biomarker for mitochondrial diseases affecting children and compared it to fibroblast-growth factor 21 (FGF-21). To investigate the mechanism of GDF-15 induction in these pathologies we measured its expression and secretion in response to mitochondrial dysfunction.

View Article and Find Full Text PDF

Kidney dysfunction is being increasingly associated with mitochondrial diseases and coenzyme Q10 (CoQ) deficiency. The assessment of CoQ status requires the biochemical determination of CoQ in biological fluids and different cell types, but no methods have been developed as yet for the analysis of CoQ in excretory systems. The aim of this study was to standardize a new procedure for urinary CoQ determination and to establish reference values for a paediatric population.

View Article and Find Full Text PDF