Publications by authors named "Raquel Martinez-Franco"

Article Synopsis
  • Novel lamellar chalcogenide materials, ITQ-75, are developed from tin and zinc sulfide using hydro(solvo)thermal methods and N-heterocyclic aromatic agents.
  • Characterization involved metal doping and modifying the synthesis gel’s composition to improve electronic structure and accessibility, achieving optical band gaps around 2.0 eV for effective solar fuel production.
  • The optimized ITQ-75 materials exhibited high photocatalytic performance in water-splitting reactions for hydrogen generation, demonstrating efficiency levels among the best yet, confirming their potential as effective photocatalysts for solar energy applications.
View Article and Find Full Text PDF

The capture of CO from post-combustion streams or from other mixtures, such as natural gas, is an effective way of reducing CO emissions, which contribute to the greenhouse effect in the atmosphere. One of the developing technologies for this purpose is physisorption on selective solid adsorbents. The ideal adsorbents are selective toward CO, have a large adsorption capacity at atmospheric pressure and are easily regenerated, resulting in high working capacity.

View Article and Find Full Text PDF

The aim of the present work is to synthesize a zeolite-based catalyst with a hollow morphology and highly dispersed metal nanoparticles (NPs) encapsulated inside the zeolite micropores. For this purpose, we have studied a treatment using tetraalkylammonium (TAA) bromides for the selective removal of a large Pt particle from the outer surface of a hollow Beta zeolite. TEM analysis reveals that we succeeded in the synthesis of a hollow beta zeolite single crystal with encapsulated particles, with a high dispersion of 50-60 %.

View Article and Find Full Text PDF

The isomorphic substitution of two different metals (Mg and Co) within the framework of the ITQ-51 zeotype (IFO structure) using bulky aromatic proton sponges as organic structure-directing agents (OSDAs) has allowed the synthesis of different stable metal-containing extra-large-pore zeotypes with high pore accessibility and acidity. These metal-containing extra-large-pore zeolites, named MgITQ-51 and CoITQ-51, have been characterized by different techniques, such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, UV-Vis spectroscopy, temperature programmed desorption of ammonia and Fourier transform infrared spectroscopy, to study their physico-chemical properties. The characterization confirms the preferential insertion of Mg and Co atoms within the crystalline structure of the ITQ-51 zeotype, providing high Brønsted acidity, and allowing their use as efficient heterogeneous acid catalysts in industrially relevant reactions involving bulky organic molecules.

View Article and Find Full Text PDF

An efficient synthesis methodology to obtain homogeneous nanosized high-silica Beta zeolites (∼10-20 nm) with high solid yields (above 95%) using simple alkyl-substituted flexible dicationic OSDAs is described. These dicationic OSDAs allow the synthesis of nanosized Beta zeolites with different Si/Al ratios (15-30) in alkaline and fluoride media, resulting in nanocrystalline materials with different physico-chemical properties. These nanosized Beta zeolites show better catalytic behavior towards the industrially-relevant alkylation of benzene with propylene to obtain cumene compared with other commercially available nanosized Beta zeolites.

View Article and Find Full Text PDF

The combination of different experimental techniques, such as solid C and H magic-angle spinning NMR spectroscopy, fluorescence spectroscopy and powder X-ray diffraction, together with theoretical calculations allows the determination of the unique structure directing the role of the bulky aromatic proton sponge 1,8-(dimethylamino)naphthalene (DMAN) towards the extra-large-pore ITQ-51 zeolite through supra-molecular assemblies of those organic molecules.

View Article and Find Full Text PDF

The synthesis of crystalline microporous materials containing large pores is in high demand by industry, especially for the use of these materials as catalysts in chemical processes involving bulky molecules. An extra-large-pore silicoaluminophosphate with 16-ring openings, ITQ-51, has been synthesized by the use of bulky aromatic proton sponges as organic structure-directing agents. Proton sponges show exceptional properties for directing extra-large zeolites because of their unusually high basicity combined with their large size and rigidity.

View Article and Find Full Text PDF