Publications by authors named "Raquel Ghini"

Background: Brazil has the largest commercial herd of ruminants with approximately 211 million head, representing 15% of world's beef production, in an area of 170 million hectares of grasslands, mostly cultivated with spp. Although nutrient reduction due to increased atmospheric carbon dioxide (CO) concentration has already been verified in important crops, studies evaluating its effects on fiber fractions and elemental composition of this grass genus are still scarce. Therefore, a better understanding of the effects of elevated CO on forage quality can elucidate the interaction between forage and livestock production and possible adaptations for a climate change scenario.

View Article and Find Full Text PDF

The objectives of this study were to evaluate the combined effects of soil biotic and abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two types of sewage sludge into soil in a 5-years field assay under tropical conditions and to predict the effects of these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield.

View Article and Find Full Text PDF

Coffee (Coffea spp.), a globally traded commodity, is a slow-growing tropical tree species that displays an improved photosynthetic performance when grown under elevated atmospheric CO2 concentrations ([CO2]). To investigate the mechanisms underlying this response, two commercial coffee cultivars (Catuaí and Obatã) were grown using the first free-air CO2 enrichment (FACE) facility in Latin America.

View Article and Find Full Text PDF