Publications by authors named "Raquel Garcia-Lopez"

Vascular co-option is a consequence of the direct interaction between perivascular cells, known as pericytes (PCs), and glioblastoma multiforme (GBM) cells (GBMcs). This process is essential for inducing changes in the pericytes' anti-tumoral and immunoreactive phenotypes. Starting from the initial stages of carcinogenesis in GBM, PCs conditioned by GBMcs undergo proliferation, acquire a pro-tumoral and immunosuppressive phenotype by expressing and secreting immunosuppressive molecules, and significantly hinder the activation of T cells, thereby facilitating tumor growth.

View Article and Find Full Text PDF

The use of new technologies in rehabilitation to evaluate and improve occupational performance and quality of life is increasing. Technological applications in the health field could help meet the needs of patients, including those of women breast cancer survivors. The main aim of this study was to design a mobile phone application "MAIA" focused on the perceived needs of women who have had breast cancer to achieve optimal performance in their daily lives in a meaningful way.

View Article and Find Full Text PDF

Multiple biological processes rely on direct intercellular interactions to regulate cell proliferation and migration in embryonic development and cancer processes. Tumor development and growth depends on close interactions between cancer cells and cells in the tumor microenvironment. During embryonic development, morphogenetic signals and direct cell contacts control cell proliferation, polarity, and morphogenesis.

View Article and Find Full Text PDF

is one of the principal genes related to Type I lissencephaly, a severe human brain malformation characterized by an abnormal neuronal migration in the cortex during embryonic development. This is clinically associated with epilepsy and cerebral palsy in severe cases, as well as a predisposition to developing mental disorders, in cases with a mild phenotype. Although genetic variations in the gene have been associated with the development of schizophrenia, little is known about the underlying neurobiological mechanisms.

View Article and Find Full Text PDF

A better understanding of the molecular mechanisms that participate in the development and clinical manifestations of schizophrenia can lead to improve our ability to diagnose and treat this disease. Previous data strongly associated the levels of deregulated ADAMTS2 expression in peripheral blood mononuclear cells (PBMCs) from patients at first episode of psychosis (up) as well as in clinical responders to treatment with antipsychotic drugs (down). In this current work, we performed an independent validation of such data and studied the mechanisms implicated in the control of ADAMTS2 gene expression.

View Article and Find Full Text PDF

Thalamic neurons are distributed between different nuclear groups of the thalamic multinuclear complex; they develop topologically ordered specific projections that convey information on voluntary motor programs and sensory modalities to functional areas in the cerebral cortex. Since thalamic neurons present a homogeneous morphology, their functional specificity is derived from their afferent and efferent connectivity. Adequate development of thalamic afferent and efferent connections depends on guide signals that bind receptors in nuclear neuropils and axonal growth cones, respectively.

View Article and Find Full Text PDF

Neurogenesis is a vital process that begins during early embryonic development and continues until adulthood, though in the latter case, it is restricted to the subventricular zone and the subgranular zone of the dentate gyrus (DG). In particular, the DG's neurogenic properties are structurally and functionally unique, which may be related to its singular vascular pattern. Neurogenesis and angiogenesis share molecular signals and act synergistically, supporting the concept of a neurogenic niche as a functional unit between neural precursors cells and their environment, in which the blood vessels play an important role.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation.

View Article and Find Full Text PDF

LIS1 is one of principal genes related with Type I lissencephaly, a severe human brain malformation characterized by abnormal neuronal migration in the cortex. The LIS1 gene encodes a brain-specific 45kDa non-catalytic subunit of platelet-activating factor (PAF) acetylhydrolase-1b (PAFAH1b), an enzyme that inactivates the PAF. We have studied the role of Lis1 using a Lis1/sLis1 murine model, which has deleted the first coding exon from Lis1 gene.

View Article and Find Full Text PDF

Objective: To examine the effectiveness of playing chess as a treatment option for children with ADHD.

Methods: Parents of 44 children ages 6 to 17 with a primary diagnosis of ADHD consented to take part in the study. Parents completed the Spanish version of the Swanson, Nolan and Pelham Scale for parents (SNAP-IV) and the Abbreviated Conner's Rating Scales for parents (CPRS-HI) prior to an 11-week chess-training program.

View Article and Find Full Text PDF

To provide a temporal framework for the genoarchitecture of brain development, we generated in situ hybridization data for embryonic and postnatal mouse brain at seven developmental stages for ∼2,100 genes, which were processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, seven reference atlases, an ontogenetic ontology, and tools to explore coexpression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified.

View Article and Find Full Text PDF

While the origin of oligodendroglia in the prosencephalon and spinal cord has been extensively studied and accurately described, the origin of this cell type in the cerebellum is largely unknown. To investigate where cerebellar oligodendrocytes generate and which migratory pathways they follow to reach their final destination in the adult, in ovo transplants were performed using the quail/chick chimeric system. The chimeric embryos were developed up to HH43-49 (17-19 days of incubation) to map the location of donor cells and analyze their phenotype by immunohistochemistry.

View Article and Find Full Text PDF

Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution.

View Article and Find Full Text PDF

Oligodendrocytes are the myelin-forming cells in the central nervous system of vertebrates. Oligodendrocyte precursors arise from multiple restricted foci distributed along the antero-posterior axis of the developing brain. In chick and mouse embryos, oligodendrocyte precursors of the anterior forebrain emerge from neuroepithelial cells of the subpallium and migrate tangentially to invade the entire telencephalon (Olivier et al.

View Article and Find Full Text PDF
Article Synopsis
  • The Central Nervous System (CNS) in vertebrates, like birds and mammals, starts to form from a special layer of cells during early development.
  • This process, called neurulation, includes the creation of the neural plate and eventually the neural tube, which will develop into the CNS.
  • The review focuses on how different parts of the brain form, explaining the important roles of certain signaling centers that help organize the brain's structure as it grows.
View Article and Find Full Text PDF

Sulfatase 1 is a secreted enzyme that modulates the sulfation state of heparan sulfate proteoglycans (HSPGs), which are potential key regulators of diverse developmental signals during embryonic patterning. In the present work, we have analyzed the Sulf1 gene expression pattern during chicken forebrain development. Our results indicate that, at early developmental stages, chicken Sulf1 is expressed in the alar and basal plate of the secondary prosencephalon (telencephalon and hypothalamus, respectively) as well as in the diencephalic basal and floor plates.

View Article and Find Full Text PDF

Fate-map studies have provided important information in relation to the regional topology of brain areas in different vertebrate species. Moreover, these studies have demonstrated that the distribution of presumptive territories in neural plate and neural tube are highly conserved in vertebrates. The aim of this review is to re-examine and correlate the distribution of presumptive neuroepithelial domains in the chick neural tube with molecular information and discuss recent data.

View Article and Find Full Text PDF

The diencephalon is a central area of the vertebrate developing brain, where the thalamic nuclear complex, the pretectum and the anterior tegmental structures are generated. It has been subdivided into prosomeres, which are transversal domains defined by morphological and molecular criteria. The zona limitans intrathalamica is a central boundary in the diencephalon that separates the posterior diencephalon (prosomeres 1 and 2), from the anterior diencephalon (prosomere 3).

View Article and Find Full Text PDF