Publications by authors named "Raquel Fernandez-Gines"

Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease that compromises liver function, for which there is not a specifically approved medicine. Recent research has identified transcription factor NRF2 as a potential therapeutic target. However, current NRF2 activators, designed to inhibit its repressor KEAP1, exhibit unwanted side effects.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder and the most common cause of cognitive decline. The alarming epidemiological features of Alzheimer's disease, combined with the high failure rate of candidate drugs tested in the preclinical phase, impose more intense investigations for new curative treatments. NRF2 (Nuclear factor-erythroid factor 2-related factor 2) plays a critical role in the inflammatory response and in the cellular redox homeostasis and provides cytoprotection in several diseases including those in the neurodegeneration spectrum.

View Article and Find Full Text PDF

Drug resistance is one of the biggest challenges in cancer treatment and limits the potential to cure patients. In many tumors, sustained activation of the protein NRF2 makes tumor cells resistant to chemo- and radiotherapy. Thus, blocking inappropriate NRF2 activity in cancers has been shown to reduce resistance in models of the disease.

View Article and Find Full Text PDF

It is widely accepted that activating the transcription factor NRF2 will blast the physiological anti-inflammatory mechanisms, which will help combat pathologic inflammation. Much effort is being put in inhibiting the main NRF2 repressor, KEAP1, with either electrophilic small molecules or disrupters of the KEAP1/NRF2 interaction. However, targeting β-TrCP, the non-canonical repressor of NRF2, has not been considered yet.

View Article and Find Full Text PDF
Article Synopsis
  • NRF2 is a transcription factor that helps the body respond to stressors like oxidative stress and inflammation, making it a potential target for treating chronic diseases such as neurodegenerative, cardiovascular, and metabolic disorders.
  • While activating NRF2 shows promise in preventing cancer, inhibiting it may be necessary in existing tumors since NRF2 can help these tumors survive.
  • The review discusses various activators and inhibitors of NRF2, as well as the potential for new treatments through advanced screening and drug repurposing to better control NRF2’s role in health and disease.
View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 is largely the result of a dysregulated host response, followed by damage to alveolar cells and lung fibrosis. Exacerbated proinflammatory cytokines release (cytokine storm) and loss of T lymphocytes (leukopenia) characterize the most aggressive presentation. We propose that a multifaceted anti-inflammatory strategy based on pharmacological activation of nuclear factor erythroid 2 p45-related factor 2 (NRF2) can be deployed against the virus.

View Article and Find Full Text PDF

New multi-target indole and naphthalene derivatives containing the oxadiazolone scaffold as a bioisostere of the melatonin acetamido group have been developed. The novel compounds were characterized at melatonin receptors MTR and MTR, quinone reductase 2 (QR2), lipoxygenase-5 (LOX-5), and monoamine oxidases (MAO-A and MAO-B), and also as radical scavengers. We found that selectivity within the oxadiazolone series can be modulated by modifying the side chain functionality and co-planarity with the indole or naphthalene ring.

View Article and Find Full Text PDF

Transcription factor NRF2 orchestrates a cellular defense against oxidative stress and, so far, has been involved in tumor progression by providing a metabolic adaptation to tumorigenic demands and resistance to chemotherapeutics. In this study, we discover that NRF2 also propels tumorigenesis in gliomas and glioblastomas by inducing the expression of the transcriptional co-activator TAZ, a protein of the Hippo signaling pathway that promotes tumor growth. The expression of the genes encoding NRF2 (NFE2L2) and TAZ (WWTR1) showed a positive correlation in 721 gliomas from The Cancer Genome Atlas database.

View Article and Find Full Text PDF

Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases.

View Article and Find Full Text PDF

The transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) triggers the first line of homeostatic responses against a plethora of environmental or endogenous deviations in redox metabolism, proteostasis, inflammation, etc. Therefore, pharmacological activation of NRF2 is a promising therapeutic approach for several chronic diseases that are underlined by oxidative stress and inflammation, such as neurodegenerative, cardiovascular, and metabolic diseases. A particular case is cancer, where NRF2 confers a survival advantage to constituted tumors, and therefore, NRF2 inhibition is desired.

View Article and Find Full Text PDF
Article Synopsis
  • - Electrical stimulation of the auricular vagus nerve (aVNS) is a new technology in bioelectronic medicine that modulates the vagus nerve's influence on various physiological processes, acting as a communication pathway between the brain and the body.
  • - The effectiveness of aVNS is influenced by engineering considerations, and addressing safety and regulatory concerns is crucial for its application in therapy.
  • - Recent international workshops focused on the physiological mechanisms, research studies, and technological developments related to aVNS, highlighting the need for innovative approaches in personalized electroceuticals to enhance therapeutic outcomes.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionseespndgikl6j2gej8j68k5frii7cmdj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once