The present study describes the formulation of a biosurfactant produced by Bacillus methylotrophicus UCP1616 and investigates its long-term stability for application as a collector in a bench-scale dissolved air flotation (DAF) prototype. For formulation, the conservative potassium sorbate was added to the biosurfactant with or without prior heat treatment at 80 °C for 30 min. After formulation, the biosurfactant samples were stored at room temperature for 180 days and the tensioactive properties of the biomolecule were determined with different pH values, temperatures and concentrations of salt.
View Article and Find Full Text PDFDue to their amphipathic nature, biosurfactants are multifunctional molecules that have considerable potential in several industries, especially the petroleum industry. In this study, the commercial production of a biosurfactant from Pseudomonas cepacia CCT6659 grown on industrial waste was investigated in a semi-industrial 50-L bioreactor for use in the removal of hydrocarbons from oily effluents. A concentration of 40.
View Article and Find Full Text PDFMicrobial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry.
View Article and Find Full Text PDF