Background: Tauopathies are a subset of neurodegenerative diseases characterized by abnormal tau inclusions. Recently, we have discovered a new, human specific, tau isoform termed W-tau that originates by intron 12 retention. Our preliminary data suggests this newly discovered W-tau isoform might prevent aberrant aggregation of other tau isoforms but is significantly downregulated in tauopathies such as Alzheimer's disease.
View Article and Find Full Text PDFW-Tau, a new tau human-specific splicing isoform generated by intron retention, has been recently described. This isoform contains an 18-residue unique sequence corresponding to the translation of the retained region of intron 12. In this work, we have described that such 18-amino-acid peptide from the retained intron 12 can inhibit tau and β amyloid peptides aggregation under conditions.
View Article and Find Full Text PDFTauopathies are a group of neurodegenerative diseases characterized by the accumulation of hyperphosphorylated tau protein in the brain. Many of these pathologies also present an inflammatory component determined by the activation of microglia, the resident immune cells of the brain. p38 MAPK is one of the molecular pathways involved in neuroinflammation.
View Article and Find Full Text PDFAlzheimer's disease (AD) and other tauopathies are histopathologically characterized by tau aggregation, along with a chronic inflammatory response driven by microglia. Over the past few years, the role of microglia in AD has been studied mainly in relation to amyloid-β (Aβ) pathology. Consequently, there is a substantial knowledge gap concerning the molecular mechanisms involved in tau-mediated toxicity and neuroinflammation, thus hindering the development of therapeutic strategies.
View Article and Find Full Text PDFTauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with Tau pathology (FTLD-tau), are a group of neurodegenerative disorders characterized by Tau hyperphosphorylation. Post-translational modifications of Tau such as phosphorylation and truncation have been demonstrated to be an essential step in the molecular pathogenesis of these tauopathies. In this work, we demonstrate the existence of a new, human-specific truncated form of Tau generated by intron 12 retention in human neuroblastoma cells and, to a higher extent, in human RNA brain samples, using qPCR and further confirming the results on a larger database of human RNA-seq samples.
View Article and Find Full Text PDFBackground: Tau is a microtubule associated protein that regulates the stability of microtubules and the microtubule-dependent axonal transport. Its hyperphosphorylated form is one of the hallmarks of Alzheimer's disease and other tauopathies and the major component of the paired helical filaments that form the abnormal proteinaceous tangles found in these neurodegenerative diseases. It is generally accepted that the phosphorylation extent of tau is the result of an equilibrium in the activity of protein kinases and phosphatases.
View Article and Find Full Text PDFTau is a microtubule-associated neuronal protein found mainly in axons. However, increasing evidence indicates that it is also present in dendrites, where it serves as an essential mediator of synaptic NMDA (N-methyl-D-aspartate) receptor-dependent excitotoxicity. Of note, NMDA receptors can also be found outside synapses in the plasma membrane, and activation of extrasynaptic NMDA receptors has been shown to be more linked to excitotoxicity than the activation of synaptic ones.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
August 2019
The main difference between the primary structures of human and mouse tau can be found at the N-terminal end of the protein. Residues 17 to 28 in human tau are not present in the mouse form of the molecule. Here we tested the capacity of these human tau residues to bind to specific proteins.
View Article and Find Full Text PDFFor unknown reasons, humans appear to be particular susceptible to developing tau pathology leading to neurodegeneration. Transgenic mice are still undoubtedly the most popular and extensively used animal models for studying Alzheimer's disease and other tauopathies. While these murine models generally overexpress human tau in the mouse brain or specific brain regions, there are differences between endogenous mouse tau and human tau protein.
View Article and Find Full Text PDFThe brain-specific tau protein binds directly through microtubules to regulate dynamically its structure and function. It also plays a critical role in the pathogenesis of a number of neurodegenerative disorders collectively known as tauopathies, the most common of which is Alzheimer's disease (AD). Under pathological conditions, the natively unfolded tau protein self-assembles into filamentous structures of aggregated, hyperphosphorylated tau.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by the presence of two aberrant structures: namely senile plaques, composed of amyloid-β peptide (Aβ), and neurofibrillary tangles, composed of tau protein. In this regard, Aβ and tau protein have been widely studied in research efforts aiming to find a therapy for AD. Aβ and tau pathologies do not always overlap.
View Article and Find Full Text PDFTau is a microtubule-associated protein that plays an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease. Several studies have suggested that tau may be secreted to extracellular medium and may be responsible of spreading of neurodegeneration. The overexpression of tau in cultured non-neuronal cells leads to the secretion of this protein.
View Article and Find Full Text PDFThe microtubule-associated protein tau plays a critical role in the pathogenesis of Alzheimer's disease (AD) and several related disorders collectively known as tauopathies. Development of tau pathology is associated with progressive neuronal loss and cognitive decline. In the brains of AD patients, tau pathology spreads following a predictable, anatomically defined progression pattern that can be followed by immunohistochemistry looking at brain post-mortem samples from Alzheimer patients at different stages of the disease.
View Article and Find Full Text PDFTau hyperphosphorylation can be considered as one of the hallmarks of Alzheimer's disease and other tauophaties. Besides its well-known role as a microtubule associated protein, Tau displays a key function as a protector of genomic integrity in stress situations. Phosphorylation has been proven to regulate multiple processes including nuclear translocation of Tau.
View Article and Find Full Text PDFArgyrophilic grain disease (AGD) is a sporadic 4 R tauopathy that usually presents in combination with other sporadic tauopathies or with Alzheimer's disease (AD) pathology, and may contribute to dementia in older age patients. In previous studies, a detailed analysis of AGD pathology in the medial temporal lobe has been hampered by the common presence of concurrent AD changes. With the objective to assess the potentiality of AGD in research on tau propagation, here we present a study of a series of AGD postmortem cases (n = 53).
View Article and Find Full Text PDFWe modified tau protein with boronic acid to facilitate its delivery into non neural or neural cultured cells lacking tau protein. Our results indicate that the incorporated tau promotes the formation of cytoplasmic extensions in non-neuronal cells, as well as the appearance of neurites in cultured tau knockout hippocampal neurons. In addition, boronated tau is incorporated into hippocampal neurons of tau knockout mice after intracranial injection in vivo.
View Article and Find Full Text PDFTau protein has been proposed as a trigger of Alzheimer's disease once it is hyperphosphorylated. However, the role that native tau forms play inside the neuronal nucleus remains unclear. In this work we present results concerning the interaction of tau protein with double-stranded DNA, single-stranded DNA, and also with a histone-DNA complex.
View Article and Find Full Text PDFArgyrophylic grain disease (AGD) is a neurodegenerative condition that has been classified among the sporadic tauopathies. Entities in this group present intracellular aggregates of hyperphosphorylated tau, giving rise to characteristic neuronal and glial inclusions. In different tauopathies, the proportion of several tau isoforms present in the aggregates shows specific patterns.
View Article and Find Full Text PDFDephosphorylation of phospho GSK3 isoforms, from COS-7 cells, was determined in vitro and in cultured cells in the absence or the presence of okadaic acid and lithium. Our results indicate a preferential dephosphorylation of phospho GSK3α by PP2A phosphatase, whereas dephosphorylation of phospho GSK3β mainly takes place by PP1 phosphatase.
View Article and Find Full Text PDFAnalysis of brain microtubule protein from patients with Alzheimer's disease showed decreased alpha tubulin levels along with increased acetylation of the alpha tubulin subunit, mainly in those microtubules from neurons containing neurofibrillary tau pathology. To determine the relationship of tau protein and increased tubulin acetylation, we studied the effect of tau on the acetylation-deacetylation of tubulin. Our results indicate that tau binds to the tubulin-deacetylase, histone deacetylase 6 (HDAC6), decreasing its activity with a consequent increase in tubulin acetylation.
View Article and Find Full Text PDFHuman recombinant tau can bind to the end of isolated human paired helical filaments (PHF). The sequential binding of tau protein to PHF could result in an elongation of the previously polymerized PHF. However, we have observed that the elongation takes place in a different way on different types of PHF.
View Article and Find Full Text PDFAlthough it remains unclear whether they are related to one another, tau aggregation and phosphorylation are the main pathological hallmarks of the neuronal disorders known as tauopathies. The capacity to aggregate is impaired in a variant of the tau 3R isoform that lacks residues 306-311 (nomenclature for the largest CNS tau isoform) and hence, we have taken advantage of this feature to study how phosphorylation and aggregation may be related as well as the role of this six amino acid peptide (VQIVYK). Through these analyses, we found that the phosphorylation of the tau variant was higher than that of the complete tau protein and that not only the deletion of these residues, but also the interaction of these residues, in tau 3R, with thioflavin-S augmented tau phosphorylation by glycogen synthase kinase 3.
View Article and Find Full Text PDFThe degeneration of neurons in disorders such as Alzheimer's disease has an immediate consequence, the release of intracellular proteins into the extracellular space. One of these proteins, tau, has proven to be toxic when added to cultured neuronal cells. This toxicity varies according to the degree of protein aggregation.
View Article and Find Full Text PDFThe interaction of amyloid beta (Abeta) 25-35 with tau protein and with the peptide 1/2R (KVTSKCGSLGNIHHKPGGG), has been investigated by chromatography, electron microscopy, and surface plasmon resonance (SPR). Abeta 25-35 comprises the minimum region of Abeta peptide that is able to aggregate into fibrils, and 1/2R contains residues 307-325 from the tau region involved in microtubule binding. The results of chromatography showed that Abeta 25-35 induces the aggregation of tau protein and of tau peptide 1/2R.
View Article and Find Full Text PDFTau protein can aggregate, in an aberrant way, in Alzheimer's disease and other tauopathies. The formation of those aggregates could take place in vitro by the addition of different compounds like polyanions or fatty acids and their derivates. Now, we found that a protein, zeta 14-3-3, facilitates the assembly of tau as well as a tau peptide containing the self-assembly region of tau molecule and a site for PKA phosphorylation.
View Article and Find Full Text PDF