Publications by authors named "Rappuoli R"

Neisseria meningitidis is a Gram-negative bacterium which colonizes the human upper respiratory tract. Occasionally, it translocates to the bloodstream causing sepsis and from there it can cross the blood-brain barrier and cause meningitis. Many of the molecules, which mediate the interaction of N.

View Article and Find Full Text PDF

Infection by Helicobacter pylori causes an acute inflammatory response followed by a chronic infection of the human gastric mucosa characterized by the infiltration of neutrophils andmononuclear inflammatory cells. The neutrophil-activating protein of Helicobacter pylori (HP-NAP) is a virulence factor that activates neutrophils, monocytes, and mast cells. However, the mechanism by which HP-NAP activates these cells is not fully understood.

View Article and Find Full Text PDF

Sepsis and meningitis caused by serogroup B meningococcus are devastating diseases of infants and young adults, which cannot yet be prevented by vaccination. By genome mining, we discovered GNA1870, a new surface-exposed lipoprotein of Neisseria meningitidis that induces high levels of bactericidal antibodies. The antigen is expressed by all strains of N.

View Article and Find Full Text PDF

Subunit intranasal vaccines offer the prospect of inducing combined systemic-mucosal immunity against mucosally transmitted infections such as human immunodeficiency virus. However, although human studies have demonstrated the induction of active immunity, secretory immunoglobulin A (sIgA) responses are variable, and no study has demonstrated protection by accepted vaccine-licensing criteria as measured by direct toxin-neutralizing activity. Using the genetically inactivated mutant diphtheria toxoid CRM(197) in a bioadhesive polycationic polysaccharide chitosan delivery system, we found that a single nasal immunization was well tolerated and boosted antitoxin neutralizing activity in healthy volunteers, which could be further boosted by a second immunization.

View Article and Find Full Text PDF

During the last century, several approaches have been used for the development of vaccines, going from the immunization with live-attenuated bacteria up to the formulation of the safer subunit vaccines. This conventional approach to vaccine development requires cultivation of the pathogen and its dissection using biochemical, immunological and microbiological methods. Although successful in several cases, this method is time-consuming and failed to provide a solution for many human pathogens.

View Article and Find Full Text PDF

During the last century several approaches have been followed for the development of vaccines. These include live-attenuated viruses and bacteria, killed microorganisms and the subunit vaccines [1]. With the introduction of recombinant DNA technologies, new approaches have been exploited for vaccine manufacturing.

View Article and Find Full Text PDF

Helicobacter pylori, a gram-negative spiral-shaped bacterium, specifically colonizes the stomachs of humans. Once established in this harsh ecological niche, it remains there virtually for the entire life of the host. To date, numerous virulence factors responsible for gastric colonization, survival, and tissue damage have been described for this bacterium.

View Article and Find Full Text PDF

The ferric uptake regulator protein Fur regulates iron-dependent gene expression in bacteria. In Helicobacter pylori it has been shown to regulate iron-activated and iron-repressed genes. In this study, we show that H.

View Article and Find Full Text PDF

Helicobacter pylori infection causes severe gastroduodenal diseases in humans. Its virulence is strongly increased by the presence of the cag pathogenicity island (cag PAI). It has been shown that CagA, a major antigen in humans, is translocated to the host cell via a secretion system encoded by the cag PAI.

View Article and Find Full Text PDF

Helicobacter pylori is a major human pathogen associated with severe gastroduodenal diseases, including ulcers and cancers. An H.pylori protein that is highly immunogenic in humans and mice has been identified recently.

View Article and Find Full Text PDF

Helicobacter pylori is a Gram-negative bacterium, which chronically infects the stomach. Little is known about the immune mechanisms limiting the spread of infection and/or contributing to protection after experimental immunization. In this study, we investigated the hypothesis that specific antibodies and host cells cooperate in the immunity against H.

View Article and Find Full Text PDF

The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes.

View Article and Find Full Text PDF

Most vaccines are still given parenterally. Mucosal vaccination would offer different advantages over parenteral immunization, including blocking of the pathogens at the portal of entry. In this paper, nontoxic Escherichia coli heat-labile enterotoxin (LT) mutants and Supramolecular Biovector systems (SMBV) were evaluated in mice as mucosal adjuvants and delivery systems, respectively, for intranasal immunization with the conjugated group C meningococcal vaccine.

View Article and Find Full Text PDF

Infectious diseases remain a major cause of deaths and disabilities in the world, the majority of which are caused by bacteria. Although immunisation is the most cost effective and efficient means to control microbial diseases, vaccines are not yet available to prevent many major bacterial infections. Examples include dysentery (shigellosis), gonorrhoea, trachoma, gastric ulcers and cancer (Helicobacter pylori).

View Article and Find Full Text PDF

We have used DNA microarrays to follow Neisseria meningitidis serogroup B (MenB) gene regulation during interaction with human epithelial cells. Host-cell contact induced changes in the expression of 347 genes, more than 30% of which encode proteins with unknown function. The upregulated genes included transporters of iron, chloride, amino acids, and sulfate, many virulence factors, and the entire pathway of sulfur-containing amino acids.

View Article and Find Full Text PDF

Helicobacter pylori encodes three two-component systems and two orphan response regulators (RRs) that are predicted to be involved in transcriptional regulation. The HP1043 gene encodes an essential OmpR-like RR, 1043RR, for which no histidine kinase has been identified. Gel filtration and cross-linking experiments on the purified 1043RR protein reveals that this protein is a dimer and in vivo dimerization assays localize the dimerization to the N-terminal regulatory domain.

View Article and Find Full Text PDF

In a previous study, we used the genome of serogroup B Meningococcus to identify novel vaccine candidates. One of these molecules, GNA33, is well conserved among Meningococcus B strains, other Meningococcus serogroups and Gonococcus and induces bactericidal antibodies as a result of being a mimetic antigen of the PorA epitope P1.2.

View Article and Find Full Text PDF

Helicobacter pylori infects the stomach of > 50% of the human population worldwide, with higher prevalence in the developing countries. A strict correlation between H. pylori infection and gastroduodenal diseases has been demonstrated, including gastritis, peptic ulcer and gastric cancer.

View Article and Find Full Text PDF

Neisseria meningitidis is a human pathogen, which, in spite of antibiotic therapy, is still a major cause of mortality due to sepsis and meningitis. Here we describe NadA, a novel surface antigen of N. meningitidis that is present in 52 out of 53 strains of hypervirulent lineages electrophoretic types (ET) ET37, ET5, and cluster A4.

View Article and Find Full Text PDF

Application of antigens with an adjuvant onto bare skin is a needle-free and pain-free immunization procedure that delivers antigens to the immunocompetent cells of the epidermis. We tested here the immunogenicity and adjuvanticity of two mutants of heat-labile enterotoxin (LT) of Escherichia coli, LTK63 and LTR72. Both mutants were shown to be immunogenic, inducing serum and mucosal antibody responses.

View Article and Find Full Text PDF

The major heat shock genes of Helicobacter pylori are regulated by the HspR repressor. In the present study we characterize the transcriptional response of the three known HspR-dependent promoters P(cbp), P(gro), and P(hrc) to different environmental stresses. A temperature shift from 37 to 42 degrees C causes a typical heat shock response at all three promoters characterized by an immediate and strong induction phase of transcription and a subsequent adaptation phase, which is specific for each promoter and whose onset is determined partially by the half-lives of the respective mRNAs.

View Article and Find Full Text PDF

Strains of Helicobacter pylori that contain the cag pathogenicity island (cag PAI) are associated with increased virulence and severe clinical outcomes. To evaluate the role of the cag island in infection, isogenic null mutations were generated in two clinical isolates (SS1 and Iris1) with distinct genetic backgrounds. When tested for their ability to establish infection in the stomach of CD1/SPF mice, at the early phase of infection, strains in which cagE, ORF528, ORF527 or ORF525 were inactivated showed a reduced capacity to initiate colonization compared to the wild-type strain.

View Article and Find Full Text PDF

The human pathogen Helicobacter pylori colonizes the mucous layer of the stomach. During parasitic infection, freely swimming bacteria adhere to the gastric epithelial cells and trigger intracellular signalling pathways. This process requires the translocation of the effector protein CagA into the host cell through a specialized type IV secretion system encoded in the cag pathogenicity island.

View Article and Find Full Text PDF