Publications by authors named "Rapita Sood"

Activation of neuronal protein synthesis upon learning is critical for the formation of long-term memory. Here, we report that learning in the contextual fear conditioning paradigm engenders a decrease in eIF2α (eukaryotic translation initiation factor 2) phosphorylation in astrocytes in the hippocampal CA1 region, which promotes protein synthesis. Genetic reduction of eIF2α phosphorylation in hippocampal astrocytes enhanced contextual and spatial memory and lowered the threshold for the induction of long-lasting plasticity by modulating synaptic transmission.

View Article and Find Full Text PDF

Dysregulation of protein synthesis is one of the key mechanisms underlying autism spectrum disorder (ASD). However, the role of a major pathway controlling protein synthesis, the integrated stress response (ISR), in ASD remains poorly understood. Here, we demonstrate that the main arm of the ISR, eIF2α phosphorylation (p-eIF2α), is suppressed in excitatory, but not inhibitory, neurons in a mouse model of fragile X syndrome (FXS; Fmr1).

View Article and Find Full Text PDF

The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals to regulate critical cellular processes such as mRNA translation, lipid biogenesis, and autophagy. Germline and somatic mutations in mTOR and genes upstream of mTORC1, such as , , , , and components of GATOR1 and KICSTOR complexes, are associated with various epileptic disorders. Increased mTORC1 activity is linked to the pathophysiology of epilepsy in both humans and animal models, and mTORC1 inhibition suppresses epileptogenesis in humans with tuberous sclerosis and animal models with elevated mTORC1 activity.

View Article and Find Full Text PDF

An important tenet of learning and memory is the notion of a molecular switch that promotes the formation of long-term memory. The regulation of proteostasis is a critical and rate-limiting step in the consolidation of new memories. One of the most effective and prevalent ways to enhance memory is by regulating the synthesis of proteins controlled by the translation initiation factor eIF2.

View Article and Find Full Text PDF

Accumulating evidence suggests that the cyclooxygenase-2 (COX-2) enzyme has additional catalytic-independent functions. Here we show that COX-2 appears to be cleaved in mouse and human tumors, which led us to hypothesize that COX-2 proteolysis may play a role in cell proliferation. The data presented herein show that a K598R point mutation at the carboxyl-terminus of COX-2 causes the appearance of several COX-2 immunoreactive fragments in nuclear compartments, and significantly enhances cell proliferation.

View Article and Find Full Text PDF

The trace fear conditioning protocol is designed to measure hippocampal function in mice. The protocol includes a neutral conditioned stimulus (tone) and an aversive unconditioned stimulus (shock), separated in time by a trace interval. The trace interval between the tone and the shock critically involves the hippocampus and could be used to evaluate hippocampal-dependent learning and memory.

View Article and Find Full Text PDF

Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is one of four known kinases that respond to cellular stress by deactivating the eukaryotic initiation factor 2 α (eIF2α) or other signal transduction cascades. Recently, both eIF2α and its kinases were found to play a role in normal and pathological brain function. Here, we show that reduction of either the amount or the activity of PERK, specifically in the CA1 region of the hippocampus in young adult male mice, enhances neuronal excitability and improves cognitive function.

View Article and Find Full Text PDF
Article Synopsis
  • The enzyme COX-2 is crucial in the kidneys for producing angiotensin II (AngII), which then reduces COX-2 levels through the activation of the AT1 receptor.
  • Research shows that the AT1 receptor not only negatively affects COX-2 indirectly but also directly decreases its levels by promoting its degradation via ubiquitination.
  • A specific part of the AT1 receptor's structure is essential for this regulation, suggesting that targeting this mechanism could lead to new treatments for conditions linked to excess COX-2.
View Article and Find Full Text PDF

The pro-inflammatory enzyme cyclooxygenase-2 (COX-2) is regularly expressed in the hippocampal neurons, but its role in emotional trauma is not known. Here we show that a single acute stress caused by a near-drowning experience results in heightened anxiety-like behavior one month after the trauma. Biochemical analyses of dorsal and ventral hippocampal CA1, CA3 and dentate gyrus revealed decreased ubiquitination and elevated levels of COX-2 in the traumatized animals only in the ventral CA1.

View Article and Find Full Text PDF

While many signals cause upregulation of the pro-inflammatory enzyme cyclooxygenase -2 (COX-2), much less is known about mechanisms that actively downregulate its expression. We have recently shown that the prostaglandin EP1 receptor reduces the expression of COX-2 in a pathway that facilitates its ubiquitination and degradation via the 26S proteasome. Here we show that an elevation of COX-2 intracellular levels causes an increase in the endogenous expression of prostaglandin EP1.

View Article and Find Full Text PDF

The cyclooxygenase (COX) enzyme isoforms COX-1 and COX-2 catalyze the main step in the generation of prostanoids that mediate major physiological functions. Whereas COX-1 is a ubiquitously expressed stable protein, COX-2 is transiently upregulated in many pathologies and is often associated with a poor prognostic outcome. We have recently shown that an interaction of COX-2 with the prostaglandin EP₁ receptor accelerates its degradation via a mechanism that augments its level of ubiquitination.

View Article and Find Full Text PDF

Oxytocin is a peptide hormone, well known for its role in labor and suckling, and most recently for its involvement in mammalian social behavior. All central and peripheral actions of oxytocin are mediated through the oxytocin receptor, which is the product of a single gene. Transcription of the oxytocin receptor is subject to regulation by gonadal steroid hormones, and is profoundly elevated in the uterus and mammary glands during parturition.

View Article and Find Full Text PDF

Chronic infusion of mice with a β2 adrenergic receptor (β2AR) analog was shown to cause long-term DNA damage in a pathway which involves β Arresin-1-mediated activation of Mdm2 and subsequent degradation of the tumor suppressor protein p53. The objective of the present study was to test whether a single acute stress, which manifests long lasting changes in behavior, affects the interaction of Mdm2 with p53, β2AR, and β Arrestin-1 in the dorsal and ventral hippocampal CA1. Adult rats were subject to underwater trauma, a brief forceful submersion under water and tested a month later for behavioral and biochemical changes.

View Article and Find Full Text PDF

The enzyme cyclooxygenase-2 (COX-2) is rapidly and transiently up-regulated by a large variety of signals and implicated in pathologies such as inflammation and tumorigenesis. Although many signals cause COX-2 up-regulation, much less is known about mechanisms that actively down-regulate its expression. Here we show that the G protein-coupled receptor prostaglandin E(1) (EP(1)) reduces the expression of COX-2 in a concentration-dependent manner through a mechanism that does not require receptor activation.

View Article and Find Full Text PDF