Publications by authors named "Raphael Zwier"

Background: Live single-cell metabolomic studies encounter inherent difficulties attributed to the limited sample volume, minimal compound quantity, and insufficient sensitivity in the Mass Spectrometry (MS) method used to obtain single-cell data. However, understanding cellular heterogeneity, functional diversity, and metabolic processes within individual cells is essential. Exploring how individual cells respond to stimuli, including drugs, environmental changes, or signaling molecules, offers insights into biology, oncology, and drug discovery.

View Article and Find Full Text PDF
Article Synopsis
  • Lipid nanoparticles (LNPs) are currently the best method for delivering messenger RNA (mRNA), and a new, cost-effective microfluidic setup has been developed for their synthesis.
  • This new method allows for precise control of LNP characteristics and shows better structural uniformity compared to LNPs made with commercial equipment or ethanol injection.
  • While the manufacturing process impacts the LNP's structure, it has only a minor effect on how effectively mRNA is delivered both in lab settings and in living organisms.
View Article and Find Full Text PDF

Purpose: The aim of the study was to develop a cheap and fast method to produce hollow microneedles and an applicator for injecting vaccines into the skin at a pre-defined depth and test the applicability of the system for dermal polio vaccination.

Methods: Hollow microneedles were produced by hydrofluoric acid etching of fused silica capillaries. An electromagnetic applicator was developed to control the insertion speed (1-3 m/s), depth (0-1,000 μm), and angle (10°-90°).

View Article and Find Full Text PDF

The aim of this work was to develop a nanolayered pH sensitive coating method whereby proteins are coated at a suitable pH on the surface of chemically modified biomedical/bioanalytical microdevices and protein release is triggered by a pH-shift upon contact with the physiological environment. In this work such a coating was developed and was applied onto microneedles. First, the surface of microneedle arrays was modified with basic groups with a surface pK below physiological pH.

View Article and Find Full Text PDF

Microneedles can enhance the penetration of vaccines into the skin for transcutaneous vaccination. In this study for the first time the influence of microneedle geometry on the transport through the formed conduits was visualised in human volunteers by confocal laser scanning microscopy. Three differently shaped 300 μm long microneedle arrays were selected and fluorescein was applied either before or after piercing.

View Article and Find Full Text PDF

The multiple protecting and barrier-supporting properties of the creamy, white biofilm vernix caseosa (VC) before and after birth suggest that a VC biomimetic could be an innovative barrier cream for barrier-deficient skin. The aim of this study was the rational design and preparation of synthetic biofilms mimicking the unique composition and properties of natural VC. Hexagonal, highly hydrated hyperbranched polyglycerol microgel particles (30 microm in diameter) were embedded in a synthetic lanolin-based lipid mixture using a micromixer.

View Article and Find Full Text PDF

Pharmacokinetics and dopaminergic effect of dopamine agonist 5-OH-DPAT in vivo were determined following transdermal iontophoresis in rats based on drug concentration in plasma (C(p)) and dopamine levels in striatum (C(DA)). Correlation of the in vitro transport with the pharmacokinetic-pharmacodynamic (PK-PD) profiles was characterized in the transport in dermatomed rat skin (DRS) and rat stratum corneum (RSC). The integrated in vivo PK-PD and in vitro transport models successfully described time course of C(p), C(DA), and in vitro flux in DRS and RSC.

View Article and Find Full Text PDF

In this report we present in detail a non-invasive pulmonary application method that can be a useful tool in studying drug and vaccine delivery to the lower airways. In this method the formulation is sprayed directly into the lungs of mice via the endotracheal route using a MicroSprayer aerolizer. Mean droplet size produced was 8 microm, appropriate for deposition in the large airways.

View Article and Find Full Text PDF