Publications by authors named "Raphael Turcotte"

The bone marrow adjusts blood cell production to meet physiological demands in response to insults. The spatial organization of normal and stress responses are unknown owing to the lack of methods to visualize most steps of blood production. Here we develop strategies to image multipotent haematopoiesis, erythropoiesis and lymphopoiesis in mice.

View Article and Find Full Text PDF

Tissue function depends on cellular organization. While the properties of individual cells are increasingly being deciphered using powerful single-cell sequencing technologies, understanding their spatial organization and temporal evolution remains a major challenge. Here, we present Image-seq, a technology that provides single-cell transcriptional data on cells that are isolated from specific spatial locations under image guidance, thus preserving the spatial information of the target cells.

View Article and Find Full Text PDF
Article Synopsis
  • Multimode optical fibers (MMF) enable minimally invasive fluorescence imaging in deep brain regions and can be used for long-duration studies on synapses and neurological diseases.
  • A major challenge is maintaining accurate light propagation during repeated imaging due to necessary manual repositioning of the fiber, which affects calibration.
  • The study introduces a two-step solution: a custom headplate for precise MMF reinsertion and sensorless adaptive optics to correct for positional shifts, resulting in successful imaging after fiber removal and reinsertion.
View Article and Find Full Text PDF

Rapid autofocusing over long distances is critical for tracking 3D topological variations and sample motion in real time. Taking advantage of a deformable mirror and Shack-Hartmann wavefront sensor, remote focusing can permit fast axial scanning with simultaneous correction of system-induced aberrations. Here, we report an autofocusing technique that combines remote focusing with sequence-dependent learning via a bidirectional long short term memory network.

View Article and Find Full Text PDF

Adaptive optics (AO) is a technique that corrects for optical aberrations. It was originally proposed to correct for the blurring effect of atmospheric turbulence on images in ground-based telescopes and was instrumental in the work that resulted in the Nobel prize-winning discovery of a supermassive compact object at the centre of our galaxy. When AO is used to correct for the eye's imperfect optics, retinal changes at the cellular level can be detected, allowing us to study the operation of the visual system and to assess ocular health in the microscopic domain.

View Article and Find Full Text PDF

Multimode optical fibers (MMFs), combined with wavefront control methods, have achieved minimally invasive in vivo imaging of neurons in deep-brain regions with diffraction-limited spatial resolution. Here, we report a method for volumetric two-photon fluorescence imaging with a MMF-based system requiring a single transmission matrix measurement. Central to this method is the use of a laser source able to generate both continuous wave light and femtosecond pulses.

View Article and Find Full Text PDF

Visual guidance at the cellular level during neurosurgical procedures is essential for complete tumour resection. We present a compact reflectance confocal microscope with a 20 mm working distance that provided <1.2 µm spatial resolution over a 600 µm × 600 µm field of view in the near-infrared region.

View Article and Find Full Text PDF

Focusing light through a step-index multimode optical fiber (MMF) using wavefront control enables minimally-invasive endoscopy of biological tissue. The point spread function (PSF) of such an imaging system is spatially variant, and this variation limits compensation for blurring using most deconvolution algorithms as they require a uniform PSF. However, modeling the spatially variant PSF into a series of spatially invariant PSFs re-opens the possibility of deconvolution.

View Article and Find Full Text PDF

Optical microscopy, owing to its noninvasiveness and subcellular resolution, enables in vivo visualization of neuronal structure and function in the physiological context. Optical-sectioning structured illumination microscopy (OS-SIM) is a widefield fluorescence imaging technique that uses structured illumination patterns to encode in-focus structures and optically sections 3D samples. However, its application to in vivo imaging has been limited.

View Article and Find Full Text PDF

The biology of haematopoietic stem cells (HSCs) has predominantly been studied under transplantation conditions. It has been particularly challenging to study dynamic HSC behaviour, given that the visualization of HSCs in the native niche in live animals has not, to our knowledge, been achieved. Here we describe a dual genetic strategy in mice that restricts reporter labelling to a subset of the most quiescent long-term HSCs (LT-HSCs) and that is compatible with current intravital imaging approaches in the calvarial bone marrow.

View Article and Find Full Text PDF

We present a scheme for active compensation of complex extrinsic polarization perturbations introduced into an optical system. Imaging polarimeter is used to measure the polarization state across a beam profile and a liquid crystal spatial light modulator controls the polarization of the input beam. A sequence of measurements permits determination of the birefringence properties of a perturbing specimen.

View Article and Find Full Text PDF

Controlling light propagation through a step-index multimode optical fiber (MMF) has several important applications, including biological imaging. However, little consideration has been given to the coupling of fiber and tissue optics. In this Letter, we characterized the effects of tissue-induced light distortions, in particular those arising from a mismatch in the refractive index of the pre-imaging calibration and biological media.

View Article and Find Full Text PDF

Cells in the brain act as components of extended networks. Therefore, to understand neurobiological processes in a physiological context, it is essential to study them in vivo. Super-resolution microscopy has spatial resolution beyond the diffraction limit, thus promising to provide structural and functional insights that are not accessible with conventional microscopy.

View Article and Find Full Text PDF

Achieving intravital optical imaging with diffraction-limited spatial resolution of deep-brain structures represents an important step toward the goal of understanding the mammalian central nervous system. Advances in wavefront-shaping methods and computational power have recently allowed for a novel approach to high-resolution imaging, utilizing deterministic light propagation through optically complex media and, of particular importance for this work, multimode optical fibers (MMFs). We report a compact and highly optimized approach for minimally invasive in vivo brain imaging applications.

View Article and Find Full Text PDF

Two-photon excitation fluorescence microscopy has revolutionized our understanding of brain structure and function through the high resolution and large penetration depth it offers. Investigating neural structures requires gaining optical access to the brain, which is typically achieved by replacing a part of the skull with one or several layers of cover glass windows. To compensate for the spherical aberrations caused by the presence of these layers of glass, collar-correction objectives are typically used.

View Article and Find Full Text PDF

Microstructural deformation of elastic lamellae plays important roles in maintaining arterial tissue homeostasis and regulating vascular smooth muscle cell fate. Our study unravels the underlying microstructural origin that enables elastic lamellar layers to evenly distribute the stresses through the arterial wall caused by intraluminal distending pressure, a fundamental requirement for tissue and cellular function. A new experimental approach was developed to quantify the spatial organization and unfolding of elastic lamellar layers under pressurization in mouse carotid arteries by coupling physiological extension-inflation and multiphoton imaging.

View Article and Find Full Text PDF

Osteocytes are the most abundant cell in the bone, and have multiple functions including mechanosensing and regulation of bone remodeling activities. Since osteocytes are embedded in the bone matrix, their inaccessibility makes in vivo studies problematic. Therefore, a non-invasive technique with high spatial resolution is desired.

View Article and Find Full Text PDF

Adjusting the objective correction collar is a widely used approach to correct spherical aberrations (SA) in optical microscopy. In this work, we characterized and compared its performance with adaptive optics in the context of brain imaging with two-photon fluorescence microscopy. We found that the presence of sample tilt had a deleterious effect on the performance of SA-only correction.

View Article and Find Full Text PDF

Transplantation of a single hematopoietic stem cell is an important method for its functional characterization, but the standard transplantation protocol relies on cell homing to the bone marrow after intravenous injection. Here, we present a method to transplant single cells directly into the bone marrow of live mice. We developed an optical platform that integrates a multiphoton microscope with a laser ablation unit for microsurgery and an optical tweezer for cell micromanipulation.

View Article and Find Full Text PDF

A single hematopoietic stem cell (HSC) is capable of reconstituting hematopoiesis and maintaining homeostasis by balancing self-renewal and cell differentiation. The mechanisms of HSC division balance, however, are not yet defined. Here we demonstrate, by characterizing at the single-cell level a purified and minimally heterogeneous murine Tie2 HSC population, that these top hierarchical HSCs preferentially undergo symmetric divisions.

View Article and Find Full Text PDF

Myelin plays an essential role in the nervous system and its disruption in diseases such as multiple sclerosis may lead to neuronal death, thus causing irreversible functional impairments. Understanding myelin biology is therefore of fundamental and clinical importance, but no tools currently exist to describe the fine spatial organization of myelin sheaths in vivo. Here we demonstrate intravital quantification of the myelin molecular structure using a microscopy method based on polarization-resolved coherent Raman scattering.

View Article and Find Full Text PDF

Physiological stem cell function is regulated by secreted factors produced by niche cells. In this study, we describe an unbiased approach based on the differential single-cell gene expression analysis of mesenchymal osteolineage cells close to, and further removed from, hematopoietic stem/progenitor cells (HSPCs) to identify candidate niche factors. Mesenchymal cells displayed distinct molecular profiles based on their relative location.

View Article and Find Full Text PDF

Elastic and collagen fibers are well known to be the major load-bearing extracellular matrix (ECM) components of the arterial wall. Studies of the structural components and mechanics of arterial ECM generally focus on elastin and collagen fibers, and glycosaminoglycans (GAGs) are often neglected. Although GAGs represent only a small component of the vessel wall ECM, they are considerably important because of their diverse functionality and their role in pathological processes.

View Article and Find Full Text PDF

Photoconversion, an irreversible shift in a fluorophore emission spectrum after light exposure, is a powerful tool for marking cellular and subcellular compartments and tracking their dynamics in vivo. This paper reports on the photoconversion properties of Di-8-ANEPPS, a commercially available membrane dye. When illuminated with near-infrared femtosecond laser pulses, Di-8-ANEPPS undergoes multiphoton photoconversion as indicated by the supralinear dependence of the conversion rate ρ on the incident power (ρpc∝Iexc2.

View Article and Find Full Text PDF