Human Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2.
View Article and Find Full Text PDFHuman Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2.
View Article and Find Full Text PDFObtaining high-resolution structures of Receptor Tyrosine Kinases that visualize extracellular, transmembrane and intracellular kinase regions simultaneously is an eagerly pursued but still unmet challenge of structural biology. The Human Epidermal Growth Factor Receptor 3 (HER3) that has a catalytically inactive kinase domain (pseudokinase) forms a potent signaling complex upon binding of growth factor neuregulin 1β (NRG1β) and upon dimerization with a close homolog, the HER2 receptor. The HER2/HER3/NRG1β complex is often referred to as an oncogenic driver in breast cancer and is an attractive target for anti-cancer therapies.
View Article and Find Full Text PDFBiochemical analyses of membrane receptor kinases have been limited by challenges in obtaining sufficient homogeneous receptor samples for downstream structural and biophysical characterization. Here, we report a suite of methods for the efficient expression, purification, and visualization by cryo-electron microscopy (cryo-EM) of near full-length Human Epidermal Growth Factor Receptor 3 (HER3), a receptor tyrosine pseudokinase, in the unliganded state. Through transient mammalian cell expression, a two-step purification with detergent exchange into lauryl maltose neopentyl glycol (LMNG), and freezing devoid of background detergent micelle, we obtained ~6Å reconstructions of the ~60kDa fully-glycosylated unliganded extracellular domain of HER3 from just 30mL of suspension culture.
View Article and Find Full Text PDFDe novo-designed receptor transmembrane domains (TMDs) present opportunities for precise control of cellular receptor functions. We developed a de novo design strategy for generating programmed membrane proteins (proMPs): single-pass α-helical TMDs that self-assemble through computationally defined and crystallographically validated interfaces. We used these proMPs to program specific oligomeric interactions into a chimeric antigen receptor (CAR) that we expressed in mouse primary T cells and found that both in vitro CAR T cell cytokine release and in vivo antitumor activity scaled linearly with the oligomeric state encoded by the receptor TMD, from monomers up to tetramers.
View Article and Find Full Text PDFHuman epidermal growth factor receptor 2 (HER2) and HER3 form a potent pro-oncogenic heterocomplex upon binding of growth factor neuregulin-1β (NRG1β). The mechanism by which HER2 and HER3 interact remains unknown in the absence of any structures of the complex. Here we isolated the NRG1β-bound near full-length HER2-HER3 dimer and, using cryo-electron microscopy, reconstructed the extracellulardomain module, revealing unexpected dynamics at the HER2-HER3 dimerization interface.
View Article and Find Full Text PDFHanker et al. reveal that co-occurring missense mutations in the human epidermal growth factor receptor 2 (HER2) and its catalytically inactive homolog HER3 synergize to promote oncogenic signaling by the HER2/HER3 complex.
View Article and Find Full Text PDFImmune-stimulatory ligands, such as major histocompatibility complex molecules and the T-cell costimulatory ligand CD86, are central to productive immunity. Endogenous mammalian membrane-associated RING-CHs (MARCH) act on these and other targets to regulate antigen presentation and activation of adaptive immunity, whereas virus-encoded homologs target the same molecules to evade immune responses. Substrate specificity is encoded in or near the membrane-embedded domains of MARCHs and the proteins they regulate, but the exact sequences that distinguish substrates from nonsubstrates are poorly understood.
View Article and Find Full Text PDFThe SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding.
View Article and Find Full Text PDFThe SARS-CoV-2 protein Nsp2 has been implicated in a wide range of viral processes, but its exact functions, and the structural basis of those functions, remain unknown. Here, we report an atomic model for full-length Nsp2 obtained by combining cryo-electron microscopy with deep learning-based structure prediction from AlphaFold2. The resulting structure reveals a highly-conserved zinc ion-binding site, suggesting a role for Nsp2 in RNA binding.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus enters host cells via an interaction between its Spike protein and the host cell receptor angiotensin-converting enzyme 2 (ACE2). By screening a yeast surface-displayed library of synthetic nanobody sequences, we developed nanobodies that disrupt the interaction between Spike and ACE2. Cryo-electron microscopy (cryo-EM) revealed that one nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains locked into their inaccessible down state, incapable of binding ACE2.
View Article and Find Full Text PDFThe COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a grave threat to public health and the global economy. SARS-CoV-2 is closely related to the more lethal but less transmissible coronaviruses SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have carried out comparative viral-human protein-protein interaction and viral protein localization analyses for all three viruses.
View Article and Find Full Text PDFWithout an effective prophylactic solution, infections from SARS-CoV-2 continue to rise worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). Disruption of this interaction confers potent neutralization of viral entry, providing an avenue for vaccine design and for therapeutic antibodies.
View Article and Find Full Text PDFAn outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection.
View Article and Find Full Text PDFA newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells.
View Article and Find Full Text PDFReceptor tyrosine kinases (RTKs) are single-span transmembrane receptors in which relatively conserved intracellular kinase domains are coupled to divergent extracellular modules. The extracellular domains initiate receptor signaling upon binding to either soluble or membrane-embedded ligands. The diversity of extracellular domain structures allows for coupling of many unique signaling inputs to intracellular tyrosine phosphorylation.
View Article and Find Full Text PDFFor evolving biological and biomedical applications of hybrid protein?lipid materials, understanding the behavior of the protein within the lipid mesophase is crucial. After more than two decades since the invention of the in meso crystallization method, a protein-eye view of its mechanism is still lacking. Numerous structural studies have suggested that integral membrane proteins preferentially partition at localized flat points on the bilayer surface of the cubic phase with crystal growth occurring from a local fluid lamellar L phase conduit.
View Article and Find Full Text PDFPGAM5 is a mitochondrial protein phosphatase whose genetic ablation in mice results in mitochondria-related disorders, including neurodegeneration. Functions of PGAM5 include regulation of mitophagy, cell death, metabolism and aging. However, mechanisms regulating PGAM5 activation and signaling are poorly understood.
View Article and Find Full Text PDFPlasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) and Knob-associated Histidine-rich Protein (KAHRP) are directly linked to malaria pathology. PfEMP1 and KAHRP cluster on protrusions (knobs) on the P. falciparum-infected erythrocyte surface and enable pathogenic cytoadherence of infected erythrocytes to the host microvasculature, leading to restricted blood flow, oxygen deprivation and damage of tissues.
View Article and Find Full Text PDFSingle-spanning receptors are typically active in dimeric or oligomeric forms in which ligand-induced complex formation and/or conformational changes are the key events that transmit information across the cell membrane. This process is often depicted exclusively in terms of extracellular receptor-ligand interactions and their intracellular consequences, but the lipid-embedded α-helical transmembrane domains can also engage in specific intermolecular interactions that play important roles in establishing receptor complex structure and regulating signal propagation through the lipid bilayer. Obtaining high-resolution structural information on these interactions is extremely challenging, and the small number of structures currently available in the protein data bank represents only about a dozen unique receptors.
View Article and Find Full Text PDFCell-free systems exploit the transcription and translation machinery of cells from different origins to produce proteins in a defined chemical environment. Due to its open nature, cell-free protein production is a versatile tool to introduce specific labels such as heavy isotopes, non-natural amino acids and tags into the protein while avoiding cell toxicity. In particular, radiolabelled peptides and proteins are valuable tools for the functional characterization of protein-protein interactions and for studying binding kinetics.
View Article and Find Full Text PDFThe mechanisms of assembly and function for many important type I/II (single-pass) transmembrane (TM) receptors are proposed to involve the formation and/or alteration of specific interfaces among their membrane-embedded α-helical TM domains. The application of lipidic cubic phase (LCP) bilayer media for crystallization of single-α-helical TM complexes has the potential to provide valuable structural and mechanistic insights into many such systems. However, the fidelity of the interfaces observed in crowded crystalline arrays has been difficult to establish from the very limited number of such structures determined using X-ray diffraction data.
View Article and Find Full Text PDF