Publications by authors named "Raphael T Haftka"

The U.S. Department of Transportation is responsible for implementing new safety improvements and regulations with the goal of ensuring limited funds are distributed to where they can have the greatest impact on safety.

View Article and Find Full Text PDF

Contact occurs in a wide variety of multibody dynamic systems, including the human musculoskeletal system. However, sensitivity and optimization studies of such systems have been limited by the high computational cost of repeated contact analyses. This study presents a novel surrogate modeling approach for performing computationally efficient three-dimensional elastic contact analyses within multibody dynamic simulations.

View Article and Find Full Text PDF

Computational speed is a major limiting factor for performing design sensitivity and optimization studies of total knee replacements. Much of this limitation arises from extensive geometry calculations required by contact analyses. This study presents a novel surrogate contact modeling approach to address this limitation.

View Article and Find Full Text PDF

Global optimization algorithms (e.g., simulated annealing, genetic, and particle swarm) have been gaining popularity in biomechanics research, in part due to advances in parallel computing.

View Article and Find Full Text PDF

Clinicians often use intuitive models based on clinical experience or regression models based on population studies to plan treatment of gait-related disorders. Because such models are constructed using data collected from previous patients, the predicted clinical outcome for a particular patient may not be reliable. We propose a new approach that uses computational models based on engineering mechanics to predict post-treatment outcome from pre-treatment movement data.

View Article and Find Full Text PDF

Variations in joint parameter (JP) values (axis positions and orientations in body segments) and inertial parameter (IP) values (segment masses, mass centers, and moments of inertia) as well as kinematic noise alter the results of inverse dynamics analyses of gait. Three-dimensional linkage models with joint constraints have been proposed as one way to minimize the effects of noisy kinematic data. Such models can also be used to perform gait optimizations to predict post-treatment function given pre-treatment gait data.

View Article and Find Full Text PDF

The high computational cost of complex engineering optimization problems has motivated the development of parallel optimization algorithms. A recent example is the parallel particle swarm optimization (PSO) algorithm, which is valuable due to its global search capabilities. Unfortunately, because existing parallel implementations are synchronous (PSPSO), they do not make efficient use of computational resources when a load imbalance exists.

View Article and Find Full Text PDF

Optimization is frequently employed in biomechanics research to solve system identification problems, predict human movement, or estimate muscle or other internal forces that cannot be measured directly. Unfortunately, biomechanical optimization problems often possess multiple local minima, making it difficult to find the best solution. Furthermore, convergence in gradient-based algorithms can be affected by scaling to account for design variables with different length scales or units.

View Article and Find Full Text PDF

Dynamic patient-specific musculoskeletal models have great potential for addressing clinical problems in orthopedics and rehabilitation. However, their predictive capability is limited by how well the underlying kinematic model matches the patient's structure. This study presents a general two-level optimization procedure for tuning any multi-joint kinematic model to a patient's experimental movement data.

View Article and Find Full Text PDF