Domain walls and phase boundaries are fundamental ingredients of ferroelectrics and strongly influence their functional properties. Although both interfaces have been studied for decades, often only a phenomenological macroscopic understanding has been established. The recent developments in experiments and theory allow to address the relevant time and length scales and revisit nucleation, phase propagation and the coupling of domains and phase transitions.
View Article and Find Full Text PDFWithin this contribution, a novel benchmark problem for the coupled magneto-mechanical boundary value problem in magneto-active elastomers is presented. Being derived from an experimental analysis of magnetically induced interactions in these materials, the problem under investigation allows us to validate different modeling strategies by means of a simple setup with only a few influencing factors. Here, results of a sharp-interface Lagrangian finite element framework and a diffuse-interface Eulerian approach based on the application of a spectral solver on a fixed grid are compared for the simplified two-dimensional as well as the general three-dimensional case.
View Article and Find Full Text PDFThe multi-phase-field approach is generalized to treat capillarity-driven diffusion parallel to the surfaces and phase boundaries, i.e., the boundaries between a condensed phase and its vapor and the boundaries between two or multiple condensed phases.
View Article and Find Full Text PDF