Publications by authors named "Raphael S Haider"

Sepsis is characterized as life-threatening organ dysfunction caused by a dysregulated host response to an infection. Despite numerous clinical trials that addressed this syndrome, there is still no causative treatment available to dampen its severity. Curtailing the infection at an early stage with anti-infectives is the only effective treatment regime besides intensive care.

View Article and Find Full Text PDF

Background: Bile salts of hepatic and microbial origin mediate interorgan cross talk in the gut-liver axis. Here, we assessed whether the newly discovered class of microbial bile salt conjugates (MBSCs) activate the main host bile salt receptors (Takeda G protein-coupled receptor 5 [TGR5] and farnesoid X receptor [FXR]) and enter the human systemic and enterohepatic circulation.

Methods: N-amidates of (chenodeoxy) cholic acid and leucine, tyrosine, and phenylalanine were synthesized.

View Article and Find Full Text PDF

More than 30 years after their discovery, arrestins are recognised multiprotein scaffolds that play essential roles in G protein-coupled receptor (GPCR) regulation and signalling. Originally named for their capacity to hinder GPCR coupling to G proteins and facilitate receptor desensitisation, arrestins have emerged as key hubs for a myriad of other functions, including receptor internalisation and scaffolding of signalling complexes. Recent structural studies have started to provide snapshots of the complexes formed by GPCRs and arrestins, supporting a wealth of biochemical data delineating the molecular determinants of such interactions.

View Article and Find Full Text PDF

The D2 dopamine receptor (D2R) signals through both G proteins and β-arrestins to regulate important physiological processes, such as movement, reward circuitry, emotion, and cognition. β-arrestins are believed to interact with G protein-coupled receptors (GPCRs) at the phosphorylated C-terminal tail or intracellular loops. GPCR kinases (GRKs) are the primary drivers of GPCR phosphorylation, and for many receptors, receptor phosphorylation is indispensable for β-arrestin recruitment.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) constitute the largest family of transmembrane proteins and play a crucial role in regulating diverse cellular functions. They transmit their signaling via binding to intracellular signal transducers and effectors, such as G proteins, GPCR kinases, and β-arrestins. To influence specific GPCR signaling behaviors, β-arrestins recruit effectors to form larger signaling complexes.

View Article and Find Full Text PDF

β-arrestins mediate regulatory processes for over 800 different G protein-coupled receptors (GPCRs) by adopting specific conformations that result from the geometry of the GPCR-β-arrestin complex. However, whether β-arrestin1 and 2 respond differently for binding to the same GPCR is still unknown. Employing GRK knockout cells and β-arrestins lacking the finger-loop-region, we show that the two isoforms prefer to associate with the active parathyroid hormone 1 receptor (PTH1R) in different complex configurations ("hanging" and "core").

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors and their signal transduction is tightly regulated by GPCR kinases (GRKs) and β-arrestins. In this review, we discuss novel aspects of the regulatory GRK/β-arrestin system. Therefore, we briefly revise the origin of the "barcode" hypothesis for GPCR/β-arrestin interactions, which states that β-arrestins recognize different receptor phosphorylation states to induce specific functions.

View Article and Find Full Text PDF

Background & Aims: Retention of bile acids in the blood is a hallmark of liver failure. Recent studies have shown that increased serum bile acid levels correlate with bacterial infection and increased mortality. However, the mechanisms by which circulating bile acids influence patient outcomes still are elusive.

View Article and Find Full Text PDF

Arrestin-1 desensitizes the activated and phosphorylated photoreceptor rhodopsin by forming transient rhodopsin-arrestin-1 complexes that eventually decay to opsin, retinal and arrestin-1. Via a multi-dimensional screening setup, we identified and combined arrestin-1 mutants that form lasting complexes with light-activated and phosphorylated rhodopsin in harsh conditions, such as high ionic salt concentration. Two quadruple mutants, D303A + T304A + E341A + F375A and R171A + T304A + E341A + F375A share similar heterologous expression and thermo-stability levels with wild type (WT) arrestin-1, but are able to stabilize complexes with rhodopsin with more than seven times higher half-maximal inhibitory concentration (IC) values for NaCl compared to the WT arrestin-1 protein.

View Article and Find Full Text PDF

Advances in resolving crystal structures of GPCRs and their binding partners as well as improvements in live-cell microscopy and the fluorescent proteins pallet has greatly driven new ideas for designing optical sensors for the same. Sensors have been developed to monitor ligand binding as well as the ensuing ligand-induced conformational changes in GPCRs, G-proteins and arrestins. In this review we will highlight the functionality of such sensor designs starting from monitoring ligand binding to receptor activation and interaction with arrestins.

View Article and Find Full Text PDF