Strains of the Bacillus cereus (Bc) group are sporulating bacteria commonly associated with foodborne outbreaks. Spores are dormant cells highly resistant to extreme conditions. Nevertheless, the pathological processes associated with the ingestion of either vegetative cells or spores remain poorly understood.
View Article and Find Full Text PDFsubsp. () is a strong pathogen toward lepidopteran larvae thanks to specific Cry toxins causing leaky gut phenotypes. Hence, and its toxins are used worldwide as microbial insecticide and in genetically modified crops, respectively, to fight crop pests.
View Article and Find Full Text PDFTissues must adapt to the different external stimuli so that organisms can survive in their environments. The intestine is a vital organ involved in food processing and absorption, as well as in innate immune response. Its adaptation to environmental cues such as diet and biotic/abiotic stress involves regulation of the proliferative rate and a switch of division mode (asymmetric versus symmetric) of intestinal stem cells (ISC).
View Article and Find Full Text PDFIn segmented tissues, anterior and posterior compartments represent independent morphogenetic domains, which are made of distinct lineages separated by boundaries. During dorsal closure of the Drosophila embryo, specific "mixer cells" (MCs) are reprogrammed in a JNK-dependent manner to express the posterior determinant engrailed (en) and cross the segment boundary. Here, we show that JNK signaling induces de novo expression of en in the MCs through repression of Polycomb (Pc) and release of the en locus from the silencing PcG bodies.
View Article and Find Full Text PDFTissue morphogenesis relies on proper differentiation of morphogenetic domains, adopting specific cell behaviours. Yet, how signalling pathways interact to determine and coordinate these domains remains poorly understood. Dorsal closure (DC) of the Drosophila embryo represents a powerful model to study epithelial cell sheet sealing.
View Article and Find Full Text PDFSegments are fundamental units in animal development which are made of distinct cell lineages separated by boundaries. Although boundaries show limited plasticity during their formation for sharpening, cell lineages make compartments that become tightly restricted as development goes on. Here, we characterize a unique case of breaking of the segment boundary in late drosophila embryos.
View Article and Find Full Text PDFIn Drosophila melanogaster, dorsal closure is a model of tissue morphogenesis leading to the dorsal migration and sealing of the embryonic ectoderm. The activation of the JNK signal transduction pathway, specifically in the leading edge cells, is essential to this process. In a genome-wide microarray screen, we identified new JNK target genes during dorsal closure.
View Article and Find Full Text PDFJNK-mediated closure of the Drosophila dorsal epidermis during embryogenesis is a well-characterised model for morphogenesis. However, little is known about how JNK signalling modifies particular cellular behaviours such as intracellular transport. Here we demonstrate that the gene encoding the small GTPase Rab30 is a new JNK transcriptional target whose function is required during embryonic and adult morphogenesis including JNK-dependent dorsal closure, embryonic head involution and thorax closure.
View Article and Find Full Text PDFPrecise control of Wnt/beta-catenin signaling is critical for animal development, stem cell renewal, and prevention of disease. In the fruit fly Drosophila melanogaster, the naked cuticle (nkd) gene limits signaling by the Wnt ligand Wingless (Wg) during embryo segmentation. Nkd is an intracellular protein that is composed of separable membrane- and nuclear-localization sequences (NLS) as well as a conserved EF-hand motif that binds the Wnt receptor-associated scaffold protein Dishevelled (Dsh), but the mechanism by which Nkd inhibits Wnt signaling remains a mystery.
View Article and Find Full Text PDFWnt/beta-catenin signals orchestrate cell fate and behavior throughout the animal kingdom. Aberrant Wnt signaling impacts nearly the entire spectrum of human disease, including birth defects, cancer, and osteoporosis. If Wnt signaling is to be effectively manipulated for therapeutic advantage, we first must understand how Wnt signals are normally controlled.
View Article and Find Full Text PDFRecent quantitative modeling of dorsal closure in the fruitfly Drosophila has revealed how multiple forces drive sealing of the two symmetrical epithelial sheets. A predictive model based on the new data allows gene function to be linked to the forces that drive tissue movement.
View Article and Find Full Text PDFDuring Drosophila development, the naked cuticle (nkd) gene attenuates wingless/Wnt signaling through a negative feedback loop mechanism. Fly and vertebrate Nkd proteins contain a putative calcium-binding EF-hand motif, the EFX domain, that interacts with the basic/PDZ region of the Wnt signal transducer, dishevelled (Dsh). Here we show that Dsh binding by Drosophila Nkd in vitro is mediated by the EFX domain as well as an adjacent C-terminal sequence.
View Article and Find Full Text PDFPlanar cell polarity signaling in Drosophila requires the receptor Frizzled and the cytoplasmic proteins Dishevelled and Prickle. From initial, symmetric subcellular distributions in pupal wing cells, Frizzled and Dishevelled become highly enriched at the distal portion of the cell cortex. We describe a Prickle-dependent intercellular feedback loop that generates asymmetric Frizzled and Dishevelled localization.
View Article and Find Full Text PDF