The use of benign stimuli to control the binding and release of labile biologics for their isolation from complex feedstocks is a key goal of modern biopharmaceutical technology. This study introduces cyclic azobenzene-peptide (CAP) hybrid ligands for the rapid and discrete photo-responsive capture and release of blood coagulation Factor VIII (FVIII). A predictive method - based on amino acid sequence and molecular architecture of CAPs - was developed to correlate the conformation of CAP photo-isomers to FVIII binding and release.
View Article and Find Full Text PDFAdeno-associated viruses (AAVs) are the vector of choice for delivering gene therapies that can cure inherited and acquired diseases. Clinical research on various AAV serotypes significantly increased in recent years alongside regulatory approvals of AAV-based therapies. The current AAV purification platform hinges on the capture step, for which several affinity resins are commercially available.
View Article and Find Full Text PDFα-1 antitrypsin (AAT) deficiency, a major risk factor for chronic obstructive pulmonary disease, is one of the most prevalent and fatal hereditary diseases. The rising demand of AAT poses a defined need for new processes of AAT manufacturing from recombinant sources. Commercial affinity adsorbents for AAT purification present the intrinsic limitations of protein ligands - chiefly, the high cost and the lability towards the proteases in the feedstocks and the cleaning-in-place utilized in biomanufacturing - which limit their application despite their high capacity and selectivity.
View Article and Find Full Text PDFFollowing the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin.
View Article and Find Full Text PDFThe impact of next-generation biorecognition elements (ligands) will be determined by the ability to remotely control their binding activity for a target biomolecule in complex environments. Compared to conventional mechanisms for regulating binding affinity (pH, ionic strength, or chaotropic agents), light provides higher accuracy and rapidity, and is particularly suited for labile targets. In this study, we demonstrate a general method to develop azobenzene-cyclized peptide ligands with light-controlled affinity for target proteins.
View Article and Find Full Text PDFWhile antibodies remain established therapeutic and diagnostic tools, other protein scaffolds are emerging as effective and safer alternatives. Affibodies in particular are a new class of small proteins marketed as bio-analytic reagents. They feature tailorable binding affinity, low immunogenicity, high tissue permeation, and high expression titer in bacterial hosts.
View Article and Find Full Text PDFThe rapid expansion of CRISPR in biotechnology, medicine, and bioprocessing poses an urgent need for advanced manufacturing of Cas nucleases. The lack of Cas-targeting ligands, however, prevents the development of platform processes for purifying this class of molecules. This work represents the first effort at developing short synthetic Cas9-binding peptides and demonstrates their applicability as affinity ligands for the purification of a Cas nuclease.
View Article and Find Full Text PDFThe ability to rapidly and accurately evaluate bioactive compounds immobilized on porous particles is crucial in the discovery of drugs, diagnostic reagents, ligands, and catalysts. Existing options for solid phase screening of bioactive compounds, while highly effective and well established, can be cost-prohibitive for proof-of-concept and early stage work, limiting its applicability and flexibility in new research areas. Here, we present a low-cost microfluidics-based platform enabling automated screening of small porous beads from solid-phase peptide libraries with high sensitivity and specificity, to identify leads with high binding affinity for a biological target.
View Article and Find Full Text PDF