Single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multi-drug resistance protein 1 (Pfmrp1) gene have previously been reported to confer resistance to Artemisinin-based Combination Therapies (ACTs) in Southeast Asia. A total of 300 samples collected from six sites between 2008 and 2019 under an ongoing malaria drug sensitivity patterns in Kenya study were evaluated for the presence of SNPs at Pfmrp1 gene codons: H191Y, S437A, I876V, and F1390I using the Agena MassARRAY® platform. Each isolate was further tested against artemisinin (ART), lumefantrine (LU), amodiaquine (AQ), mefloquine (MQ), quinine (QN), and chloroquine (CQ) using malaria the SYBR Green I-based method to determine their in vitro drug sensitivity.
View Article and Find Full Text PDFIntroduction: diarrheal infections in young children below five years and food animals are caused by diarrheagenic Escherichia coli strains. The study focused on understanding the association between DEC pathotypes in children below five years and food animals to establish the possibility of zoonotic transmission.
Methods: samples from 150 children who presented with diarrhea at the Kisumu County Hospital and 100 stool samples from food animals were collected and processed using culture methods.
Objectives: HIV and malaria coinfection impacts disease management and clinical outcomes. This study investigated hematologic abnormalities in malaria-asymptomatic people living with HIV (PLHIV) in regions with differing malaria transmission.
Methods: Study participants were enrolled in the African Cohort Study: two sites in Kenya, one in Uganda, and one in Nigeria.
Objectives: This study examined the treatment response of mixed vs single-species Plasmodium falciparum infections to artemisinin-based combination therapies (ACTs).
Methods: A total of 1211 blood samples collected on days 0, 7, 14, 21, 28, 35, and 42 from 173 individuals enrolled in two randomized ACT efficacy studies were tested for malaria using 18s ribosomal RNA-based real-time polymerase chain reaction. All recurrent parasitemia were characterized for Plasmodium species composition and time to reinfection during 42-day follow-up compared across ACTs.
Background: Dihydroartemisinin-piperaquine (DHA-PPQ) is an alternative first-line antimalarial to artemether-lumefantrine in Kenya. However, recent reports on the emergence of PPQ resistance in Southeast Asia threaten its continued use in Kenya and Africa. In line with the policy on continued deployment of DHA-PPQ, it is imperative to monitor the susceptibility of Kenyan parasites to PPQ and other antimalarials.
View Article and Find Full Text PDFThe impact of pre-existing immunity on the efficacy of artemisinin combination therapy is largely unknown. We performed in-depth profiling of serological responses in a therapeutic efficacy study [comparing artesunate-mefloquine (ASMQ) and artemether-lumefantrine (AL)] using a proteomic microarray. Responses to over 200 antigens were significantly associated with ASMQ treatment outcome but not AL.
View Article and Find Full Text PDFBackground: The ABO blood groups consist of A, B, and H carbohydrate antigens, which regulate protein activities during malaria infection in humans. Understanding the interplay between the malaria parasite and blood group antigens is essential in understanding new interventions to reduce the global burden of malaria. This study assessed the burden of malaria infection among individuals with varying blood groups seeking treatment at selected hospitals in Kenya.
View Article and Find Full Text PDFBackground: Assessing the infectious reservoir is critical in malaria control and elimination strategies. We conducted a longitudinal epidemiological study in a high-malaria-burden region in Kenya to characterize transmission in an asymptomatic population.
Methods: 488 study participants encompassing all ages in 120 households within 30 clusters were followed for 1 year with monthly sampling.
Background: The epidemiology and severity of non-falciparum malaria in endemic settings has garnered little attention. We aimed to characterise the prevalence, interaction, clinical risk factors, and temporal trends of non-falciparum Plasmodium species among symptomatic individuals presenting at health-care facilities in endemic settings of Kenya.
Methods: We diagnosed and analysed infecting malaria species (Plasmodium falciparum, Plasmodium ovale curtisi, Plasmodium ovale wallikeri, and Plasmodium malariae) via PCR in clinical samples collected between March 1, 2008, and Dec 31, 2016, from six hospitals located in different regions of Kenya.
Background: Malaria and schistosomiasis present considerable disease burden in tropical and sub-tropical areas and severity is worsened by co-infections in areas where both diseases are endemic. Although pathogenesis of these infections separately is well studied, there is limited information on the pathogenic disease mechanisms and clinical disease outcomes in co-infections. In this study, we investigated the prevalence of malaria and schistosomiasis co-infections, and the hematologic and blood chemistry abnormalities in asymptomatic adults in a rural fishing community in western Kenya.
View Article and Find Full Text PDFThe emergence of artemisinin resistance in South East Asia calls for urgent discovery of new drug compounds that have antiplasmodial activity. Unlike the classical compound screening drug discovery methods, the rational approach involving targeted drug discovery is less cumbersome and therefore key for innovation of new antiplasmodial compounds. (Pf) utilizes the process of host erythrocyte remodeling using Plasmodium-helical interspersed sub-telomeric domain (PHIST) containing proteins, which are amenable drug targets.
View Article and Find Full Text PDFMalaria drug resistance is a global public health concern. Though parasite mutations have been associated with resistance, other factors could influence the resistance. A robust surveillance system is required to monitor and help contain the resistance.
View Article and Find Full Text PDFPurpose: Data on the clonal distribution of in Africa are scanty, partly due to the high costs and long turnaround times imposed by conventional genotyping methods such as and multilocus sequence typing (MLST), which means there is a need for alternative typing approaches. This study evaluated the discriminatory power, cost of and time required for genotyping Kenyan staphylococcal isolates using iPlex MassARRAY compared to conventional methods.
Methodology: Fifty-four clinical isolates from three counties were characterized using iPlex MassARRAY, and MLST typing methods.