Publications by authors named "Raphael Mourad"

Predicting molecular processes using deep learning is a promising approach to provide biological insights for non-coding single nucleotide polymorphisms identified in genome-wide association studies. However, most deep learning methods rely on supervised learning, which requires DNA sequences associated with functional data, and whose amount is severely limited by the finite size of the human genome. Conversely, the amount of mammalian DNA sequences is growing exponentially due to ongoing large-scale sequencing projects, but in most cases without functional data.

View Article and Find Full Text PDF

The recent development of deep learning methods have undoubtedly led to great improvement in various machine learning tasks, especially in prediction tasks. This type of methods have also been adapted to answer various problems in bioinformatics, including automatic genome annotation, artificial genome generation or phenotype prediction. In particular, a specific type of deep learning method, called graph neural network (GNN) has repeatedly been reported as a good candidate to predict phenotypes from gene expression because its ability to embed information on gene regulation or co-expression through the use of a gene network.

View Article and Find Full Text PDF

Objectives: To develop a three-stage convolutional neural network (CNN) approach to segment anatomical structures, classify the presence of lumbar spinal stenosis (LSS) for all 3 stenosis types: central, lateral recess and foraminal and assess its severity on spine MRI and to demonstrate its efficacy as an accurate and consistent diagnostic tool.

Methods: The three-stage model was trained on 1635 annotated lumbar spine MRI studies consisting of T2-weighted sagittal and axial planes at each vertebral level. Accuracy of the model was evaluated on an external validation set of 150 MRI studies graded on a scale of absent, mild, moderate or severe by a panel of 7 radiologists.

View Article and Find Full Text PDF

Objectives: Symptomatic lumbar spinal stenosis (LSS) leads to functional impairment and pain. While radiologic characterization of the morphological stenosis grade can aid in the diagnosis, it may not always correlate with patient symptoms. Artificial intelligence (AI) may diagnose symptomatic LSS in patients solely based on self-reported history questionnaires.

View Article and Find Full Text PDF

The DNA damage response is essential to safeguard genome integrity. Although the contribution of chromatin in DNA repair has been investigated, the contribution of chromosome folding to these processes remains unclear. Here we report that, after the production of double-stranded breaks (DSBs) in mammalian cells, ATM drives the formation of a new chromatin compartment (D compartment) through the clustering of damaged topologically associating domains, decorated with γH2AX and 53BP1.

View Article and Find Full Text PDF

Motivation: Genome-wide association studies have systematically identified thousands of single nucleotide polymorphisms (SNPs) associated with complex genetic diseases. However, the majority of those SNPs were found in non-coding genomic regions, preventing the understanding of the underlying causal mechanism. Predicting molecular processes based on the DNA sequence represents a promising approach to understand the role of those non-coding SNPs.

View Article and Find Full Text PDF

Study Design: Medical vignettes.

Objectives: Lumbar spinal stenosis (LSS) is a degenerative condition with a high prevalence in the elderly population, that is associated with a significant economic burden and often requires spinal surgery. Prior authorization of surgical candidates is required before patients can be covered by a health plan and must be approved by medical directors (MDs), which is often subjective and clinician specific.

View Article and Find Full Text PDF

Purpose: Lumbar spinal stenosis (LSS) is a condition affecting several hundreds of thousands of adults in the United States each year and is associated with significant economic burden. The current decision-making practice to determine surgical candidacy for LSS is often subjective and clinician specific. In this study, we hypothesize that the performance of artificial intelligence (AI) methods could prove comparable in terms of prediction accuracy to that of a panel of spine experts.

View Article and Find Full Text PDF

Background/aim: In higher eukaryotes, the three-dimensional (3D) organization of the genome is intimately related to numerous key biological functions including gene expression, DNA repair and DNA replication regulations. Alteration of 3D organization, in particular topologically associating domains (TADs), is detrimental to the organism and can give rise to a broad range of diseases such as cancers.

Methods: Here, we propose a versatile regression framework which not only identifies TADs in a fast and accurate manner, but also detects differential TAD borders across conditions for which few methods exist, and predicts 3D genome reorganization after chromosomal rearrangement.

View Article and Find Full Text PDF

DNA is a complex molecule carrying the instructions an organism needs to develop, live and reproduce. In 1953, Watson and Crick discovered that DNA is composed of two chains forming a double-helix. Later on, other structures of DNA were discovered and shown to play important roles in the cell, in particular G-quadruplex (G4).

View Article and Find Full Text PDF

The repair of DNA double-strand breaks (DSBs) is essential for safeguarding genome integrity. When a DSB forms, the PI3K-related ATM kinase rapidly triggers the establishment of megabase-sized, chromatin domains decorated with phosphorylated histone H2AX (γH2AX), which act as seeds for the formation of DNA-damage response foci. It is unclear how these foci are rapidly assembled to establish a 'repair-prone' environment within the nucleus.

View Article and Find Full Text PDF

Motivation: The three dimensions (3D) genome is essential to numerous key processes such as the regulation of gene expression and the replication-timing program. In vertebrates, chromatin looping is often mediated by CTCF, and marked by CTCF motif pairs in convergent orientation. Comparative high-throughput sequencing technique (Hi-C) recently revealed that chromatin looping evolves across species.

View Article and Find Full Text PDF

In higher eukaryotes, the three-dimensional (3D) organization of the genome is intimately related to numerous key biological functions including gene expression, DNA repair and DNA replication regulations. Alteration of this 3D organization is detrimental to the organism and can give rise to a broad range of diseases such as cancers. Here, we review recent advances in the field.

View Article and Find Full Text PDF

Double-strand breaks (DSBs) result from the attack of both DNA strands by multiple sources, including radiation and chemicals. DSBs can cause the abnormal chromosomal rearrangements associated with cancer. Recent techniques allow the genome-wide mapping of DSBs at high resolution, enabling the comprehensive study of their origins.

View Article and Find Full Text PDF

The three-dimensional (3D) organization of the genome is intimately related to numerous key biological functions including gene expression and DNA replication regulations. The mechanisms by which molecular drivers functionally organize the 3D genome, such as topologically associating domains (TADs), remain to be explored. Current approaches consist in assessing the enrichments or influences of proteins at TAD borders.

View Article and Find Full Text PDF

Chromosomal organization in 3D plays a central role in regulating cell-type specific transcriptional and DNA replication timing programs. Yet it remains unclear to what extent the resulting long-range contacts depend on specific molecular drivers. Here we propose a model that comprehensively assesses the influence on contacts of DNA-binding proteins, cis-regulatory elements and DNA consensus motifs.

View Article and Find Full Text PDF

Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests.

View Article and Find Full Text PDF

Objective: Antiretroviral-naive HIV-positive individuals contribute to the transmission of drug-resistant viruses, compromising first-line therapy. Using phylogenetic inference, we quantified the proportion of transmitted drug-resistance originating from a treatment-naive source.

Methods: Using a novel phylotype-based approach, 24 550 HIV-1 subtype B partial pol gene sequences from the UK HIV Drug Resistance database were analysed.

View Article and Find Full Text PDF

Chromosome folding can reinforce the demarcation between euchromatin and heterochromatin. Two new studies show how epigenetic data, including DNA methylation, can accurately predict chromosome folding in three dimensions. Such computational approaches reinforce the idea of a linkage between epigenetically marked chromatin domains and their segregation into distinct compartments at the megabase scale or topological domains at a higher resolution.

View Article and Find Full Text PDF

Common variants at many loci have been robustly associated with asthma but explain little of the overall genetic risk. Here we investigate the role of rare (<1%) and low-frequency (1-5%) variants using the Illumina HumanExome BeadChip array in 4,794 asthma cases, 4,707 non-asthmatic controls and 590 case-parent trios representing European Americans, African Americans/African Caribbeans and Latinos. Our study reveals one low-frequency missense mutation in the GRASP gene that is associated with asthma in the Latino sample (P=4.

View Article and Find Full Text PDF

In the cell nucleus, each chromosome is confined to a chromosome territory. This spatial organization of chromosomes plays a crucial role in gene regulation and genome stability. An additional level of organization has been discovered at the chromosome scale: the spatial segregation into open and closed chromatins to form two genome-wide compartments.

View Article and Find Full Text PDF

Background: Typical analysis of time-series gene expression data such as clustering or graphical models cannot distinguish between early and later drug responsive gene targets in cancer cells. However, these genes would represent good candidate biomarkers.

Results: We propose a new model - the dynamic time order network - to distinguish and connect early and later drug responsive gene targets.

View Article and Find Full Text PDF

Linkage disequilibrium study represents a major issue in statistical genetics as it plays a fundamental role in gene mapping and helps us to learn more about human history. The linkage disequilibrium complex structure makes its exploratory data analysis essential yet challenging. Visualization methods, such as the triangular heat map implemented in Haploview, provide simple and useful tools to help understand complex genetic patterns, but remain insufficient to fully describe them.

View Article and Find Full Text PDF

Probabilistic graphical models have been widely recognized as a powerful formalism in the bioinformatics field, especially in gene expression studies and linkage analysis. Although less well known in association genetics, many successful methods have recently emerged to dissect the genetic architecture of complex diseases. In this review article, we cover the applications of these models to the population association studies' context, such as linkage disequilibrium modeling, fine mapping and candidate gene studies, and genome-scale association studies.

View Article and Find Full Text PDF