By coupling optical and electrical modeling, we have investigated the photovoltaic performances of p-i-n radial nanowires array based on crystalline p-type silicon (c-Si) core/hydrogenated amorphous silicon (a-Si:H) shell. By varying either the doping concentration of the c-Si core, or back contact work function we can separate and highlight the contribution to the cell's performance of the nanowires themselves (the radial cell) from the interspace between the nanowires (the planar cell). We show that the build-in potential (V ) in the radial and planar cells strongly depends on the doping of c-Si core and the work function of the back contact respectively.
View Article and Find Full Text PDFAn in-depth study of metal assisted chemical etching (MACE) of p-type c-Si in HF/HO aqueous solutions using Pt nanoparticles as catalysts is presented. Combination of cyclic voltammetry, open circuit measurements, chronoamperometry, impedance spectroscopy, and 2D band bending modeling of the metal/semiconductor/electrolyte interfaces at the nanoscale and under different etching conditions allows gaining physical insights into this system. Additionally, in an attempt to mimic the etching conditions, the modeling has been performed with a positively biased nanoparticle buried in the Si substrate.
View Article and Find Full Text PDF