A tightly focused radially polarized laser beam forms an unusual bimodal field distribution in an optical lambda/2-microresonator. We use a single-molecule dipole to probe the vector properties of this field distribution by tuning the resonator length with nanometer precision. Comparing calculated and experimental excitation patterns provides the three-dimensional orientation of the single-molecule dipole in the microresonator.
View Article and Find Full Text PDFWe present a general review of different microresonator structures and how they can be used in future device applications in modern analytical methods by tailoring the optical properties of single quantum emitters. The main emphasis is on the tunable lambda/2-Fabry-Perot-type microresonator which we used to obtain the results presented in this article. By varying the mirror distance the local mode structure of the electromagnetic field is altered and thus the radiative coupling of fluorescent single quantum emitters embedded inside the resonator to that field is changed, too.
View Article and Find Full Text PDFSilicon nanocrystals were synthesized by CO(2) laser pyrolysis of SiH(4). The fresh silicon nanopowder was oxidized in water to obtain SiO(2) nanoparticles (NPs) exhibiting strong red-orange photoluminescence. Samples of SiO(2) NPs embedded in low concentration in a thin polymer layer were prepared by spin-coating a dedicated solution on quartz cover slides.
View Article and Find Full Text PDFWe present experimental and theoretical results on changing the fluorescence emission spectrum of a single molecule by embedding it within a tunable planar microcavity with subwavelength spacing. The cavity length is changed with nanometer precision by using a piezoelectric actuator. By varying its length, the local mode structure of the electromagnetic field is changed together with the radiative coupling of the emitting molecule to the field.
View Article and Find Full Text PDFThe exact localization of a quantum emitter in a transparent dielectric medium is an important task in applications of precision confocal microscopy. Therefore we use a planar metallic subwavelength microcavity that can be reversibly tuned across the entire visible range, with the transparent medium between the cavity mirrors. By analyzing the excitation patterns resulting from the illumination of a single fluorescent bead with a radially polarized doughnut mode laser beam we can determine the longitudinal position of this bead in the microcavity with an accuracy of a few nanometers.
View Article and Find Full Text PDFWe evaluate the field distribution in the focal spot of the fundamental Gaussian beam as well as radially and azimuthally polarized doughnut beams focused inside a planar metallic sub-wavelength microcavity using a high numerical aperture objective lens. We show that focusing in the cavity results in a much tighter focal spot in longitudinal direction compared to free space and in spatial discrimination between longitudinal and in-plane field components. In order to verify the modeling results we experimentally monitor excitation patterns of fluorescence beads inside the lambda/2-cavity and find them in full agreement to the modeling predictions.
View Article and Find Full Text PDF